# Everything you always wanted to know about ML (but were afraid to ask) BSSM 2019 

 Jacopo De Stefani - jdestefa@ulb.ac.beUniversité Libre de Bruxelles

Tuesday $3^{\text {rd }}$ September, 2019

Disclaimer


Relevant XCKD: 1570

## Machine Learning?



## ULB <br> Some examples - Image classification



Some examples - Fraud Detection


## ULB

Some examples - Villo availability prediction


## ULB

## Some examples - Time Series Analysis



## ULB What are the common points?

- Structured data
- Often not the case in real-life problem
- Preprocessing


## ULB What are the common points?

- Structured data
- Often not the case in real-life problem
- Preprocessing
- Single output variable
- Fraud Detection,Image classification: Discrete value $\Rightarrow$ Classification
- Villo,TS: Continuous value $\Rightarrow$ Regression


## ULB What are the common points?

- Structured data
- Often not the case in real-life problem
- Preprocessing
- Single output variable
- Fraud Detection,Image classification: Discrete value $\Rightarrow$ Classification
- Villo,TS: Continuous value $\Rightarrow$ Regression
- Unknown Input/Output mapping
- No available model
- Data-driven


## ULB <br> Some examples - Image classification






$$
h_{I C}: \mathbf{X} \in \mathbb{R}^{32 \times 32} \mapsto y \in\{0, \cdots, 9\}
$$

Some examples - Fraud Detection


$$
h_{F D}:<I D, \text { Country, Amount, Amount }{ }_{\text {avg }}, . .>\nmid y \in\{0,1\}
$$

## ULB

Some examples - Regression
$\backsim$
ш $\stackrel{\rightharpoonup}{\square}$ $\stackrel{-}{-}$ ャ $\stackrel{\rightharpoonup}{\sim}$ $\propto$

$h_{R}:<$ Lat,Long, Weather, Day, $\cdot \ggg \in \mathbb{R}^{+}$

## ULB

## Some examples - Time Series Analysis



$$
h_{T S}: \mathbf{X}=\left[y_{t-d}, \cdots, y_{t-1}\right] \in \mathbb{R}^{d} \mapsto y=y_{t} \in \mathbb{R}
$$

Machine Learning Overview


## ULB

## Machine Learning

## Definition

A computer program is said to learn from experience $E$ with respect to some class of tasks T and performance measure $P$ if its performance at tasks in $T$, as measured by $P$, improves with experience $E$.
T. Mitchell, 1997

## ULB <br> Supervised Learning Problem - ?

- Input: A vector of $n$ random variables $\mathrm{x} \in \mathcal{X} \subset \mathbb{R}^{N}$, distributed according to an unknown probabilistic distribution $F_{x}(\cdot)$.
- Target operator $f: \mathbf{x} \mapsto y \in \mathcal{Y}$ according to an unknown probability conditional distribution $F_{y}(y \mid x=\mathbf{x})$.
- Training set: $\left.D_{n}=\left\{<\mathbf{x}_{1}, y_{1}>, \cdots,<\mathbf{x}_{1}, y_{1}\right\rangle\right\}$, drawn according to the joint input/output density $F_{x y}(\mathbf{x}, y)$.


## Learning machine - ?

- Learning machine
- Hypothesis/Model: $h(\cdot, \cdot):<\mathrm{x}, \vartheta>\mapsto h(\mathrm{x}, \vartheta) \in \mathcal{Y}$
- Class of hypotheses: $h(\cdot, \vartheta), \vartheta \in \Theta$
- Loss function: $L(\cdot, \cdot):<\mathbf{x}, y>\mapsto L(\mathbf{x}, y) \in \mathbb{R}$
- Learning algorithm: $\mathcal{L}:<\Theta, D_{n}>\mapsto h\left(\cdot, \vartheta_{n}\right)$


## Empirical risk minimization - ?

## ULB

## Machine Learning Process - ?

Preliminary phase<br>1. Problem formulation<br>2. Experimental design<br>3. Preprocessing step<br>- Missing data<br>- Feature selection<br>- Outlier removal<br>Learning phase

1. Parametric identification
2. Model selection

## Parametric identification - ?

The choice of an optimization algorithm depends on the form of:

$$
\begin{equation*}
J(\vartheta)=R_{e m p}(\vartheta)=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, h\left(\mathbf{x}_{\mathbf{i}}, \vartheta\right)\right) \tag{4}
\end{equation*}
$$

which in turns depends on:

- Model: $h(\cdot, \vartheta), \vartheta \in \Theta$
- Loss function: $L(y, h(\cdot, \mathbf{x}))$


## ULB

## Analytic solution - ?

It exists a closed form solution:

$$
\begin{equation*}
\vartheta_{n}=\left(X^{T} X\right)^{-1} X Y \tag{7}
\end{equation*}
$$

## ULB

## Iterative search - ?

In order to minimize:

$$
\begin{equation*}
J(\vartheta)=R_{e m p}(\vartheta)=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, h\left(\mathbf{x}_{\mathbf{i}}, \vartheta\right)\right) \tag{8}
\end{equation*}
$$

One need to solve:

$$
\begin{equation*}
\nabla J(\vartheta)=0 \tag{9}
\end{equation*}
$$

Several methods provides incremental solutions in the form:

$$
\begin{equation*}
\vartheta^{(\tau+1)}=\vartheta^{(\tau)}+\Delta \vartheta^{(\tau)} \tag{10}
\end{equation*}
$$

The first order derivative gives indication on the behaviour of the function:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}>0 \Rightarrow \nearrow \\
& \frac{\partial f}{\partial x}<0 \Rightarrow \searrow
\end{aligned}
$$

Critical points $x *$ are candidates for local minima/maxima

$$
\begin{equation*}
\frac{\partial f}{\partial x^{*}}=0 \tag{11}
\end{equation*}
$$

1-Dimensional

The first order derivative gives indication on the behaviour of the function, along each direction:

$$
\begin{aligned}
\nabla f & =\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \cdots\right] \\
\nabla_{i} & >0 \Rightarrow \nearrow_{i} \\
\nabla_{i} & <0 \Rightarrow \searrow_{i}
\end{aligned}
$$

Critical points $x *$ are candidates for local minima/maxima

$$
\begin{equation*}
\nabla f=0 \tag{12}
\end{equation*}
$$

$n$-dimensional

Gradient descent - ?

$$
\begin{align*}
& \vartheta^{(\tau+1)}=\vartheta^{(\tau)}+\Delta \vartheta^{(\tau)}  \tag{13}\\
& \Delta \vartheta^{(\tau)}=-\eta \nabla J\left(\vartheta^{(\tau)}\right) \tag{14}
\end{align*}
$$

figure/GradientDescent.jpg

## ULB

## Batch gradient descent

1: Initialize $\vartheta$ et $\eta$
2: while! converged do
3: $\quad$ for $i \in\left\{1, \cdots, n_{b}\right\}$ do
4: $\quad \vartheta^{(\tau+1)}=\vartheta^{(\tau)}-$
$\eta \nabla J_{i}\left(\vartheta^{(\tau)}\right)$
5: end for
6: end while

Standard gradient descent

1: Initialize $\vartheta$ et $\eta$
2: while! converged do
3: $\quad$ for $i \in\left\{1, \cdots, n_{b}\right\}$ do
4: $\quad \vartheta^{(\tau+1)}=\vartheta^{(\tau)}-$
$\eta \frac{1}{b_{i}} \sum_{i=1}^{b_{i}} \nabla J_{i}\left(\vartheta^{(\tau)}\right)$
5: end for
6: end while

Batch gradient descent

## ULB <br> Stochastic gradient descent

```
1: Initialize \vartheta et }
2: while! converged do
3: for }i\in{1,\cdots,\mp@subsup{n}{b}{}}\mathrm{ do
\vartheta(\tau+1)}=\mp@subsup{\vartheta}{}{(\tau)}
\eta}\frac{1}{\mp@subsup{b}{i}{}}\mp@subsup{\sum}{i=1}{\mp@subsup{b}{i}{}}\nabla\mp@subsup{J}{i}{\prime}(\vartheta(\tau)
5: end for
6: end while
```

Batch gradient descent

1: Initialize $\vartheta$ et $\eta$
2: while! converged do
3: $\quad$ Shuffle training set
4: $\quad$ for $i \in\left\{1, \cdots, n_{b}\right\}$ do
5: $\quad \vartheta^{(\tau+1)}=\vartheta^{(\tau)}-$ $\eta \nabla J_{i}\left(\vartheta^{(\tau)}\right)$
6: end for
7: end while

Stochastic gradient descent

## ULB

## Methods comparison

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent


## ULB

## And many more...

- Iterative methods
- Newton method
- Levenberg-Marquardt
- Stochastic gradient descent
- Momentum
- AdaGrad
- RMSProp
- Adam
- Meta-heuristics
- Random search
- Genetic algorithm
- Simulated annealing

The selection of a model is usually perfomed by looking at its performance:

$$
\begin{equation*}
R_{t s}(\vartheta)=\frac{1}{n_{t s}} \sum_{i=1}^{n_{t s}} L\left(y_{i}, h\left(\mathbf{x}_{\mathbf{i}}, \vartheta\right)\right) \tag{15}
\end{equation*}
$$

on unseen data:

$$
\begin{equation*}
D_{t s}=\left\{<\mathbf{x}_{\mathbf{n}+\mathbf{1}}, \mathbf{y}_{\mathbf{n}+\mathbf{1}}>, \cdots,<\mathbf{x}_{\mathbf{n}+\mathbf{n}_{\mathbf{t s}}}, y_{n+n_{t s}}>\right\} \tag{16}
\end{equation*}
$$

## Cross Validation



## ULB

## Models - Linear model

- Parameters:
$\vartheta=\mathbf{w}$
- Parametric
identification:
Closed form / Gradient descent


## ULB <br> Models - Logistic regression

n


- Parameters: $\vartheta=\mathbf{w}$
- Parametric identification:
Maximum Likelihood
Estimation +
Gradient descent


## ULB

## Models - ANN

- Parameters:
$\vartheta=\left[\mathbf{w}_{\mathbf{h}}, \mathbf{w}_{\mathbf{o}}\right]$
- Parametric identification:
Gradient descent
$y=f\left(b_{o}+\sum_{j=1}^{|H|} w_{j o} \cdot g\left(\sum_{i=1}^{|I|} w_{i j} x_{i}+b_{j}\right)\right)$ +
Backpropagation


## Backpropagation



## ULB

## Perceptron



## ULB

## Deep Learning - Intuition



Demo: http://playground.tensorflow.org/

Deep Learning - RNN - Intuition


## ULB

## Deep Learning - CNN - Intuition



Demo: https://cs.stanford.edu/people/karpathy/ convnetjs/demo/mnist.html

## ULB

## And many more...

- Non-parametric methods
- Decision Trees
- K-nearest neighbors
- Radial Basis Functions
- Network based
- CNN
- Restricted Boltzmann Machines
- Ensemble techniques
- Random Forests
- Gradient Boosting


## ULB

## Wrap-up

- ML is not magic, but heavily relying on:
- Linear algebra
- Statistics
- Data is as important (if not more) than the model
- Data preprocessing can be as time consuming as parameter estimation / model selection
- Simpler is (often) better


Thank you for your attention! Any questions/comments?


Bibliography I

