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Though machine learning techniques have been often
used for stock prices forecasting, few results are avai-
lable for market fluctuation prediction. Nevertheless,
volatility forecasting is an essential tool for any trader
wishing to assess the risk of a financial investment.
The main challenge of volatility forecasting is that,
since this quantity is not directly observable, we can-
not predict its actual value but we have to rely on some
observers, known as volatility proxies (Poon & Gran-
ger, 2003) based either on intraday (Martens, 2002)
or daily data. Once a proxy is chosen, the standard
approach to volatility forecasting is the well-known
GARCH-like model(Andersen & Bollerslev, 1998). In
recent years several hybrid approaches are emerging
(Kristjanpoller et al., 2014; Dash & Dash, 2016; Mon-
fared & Enke, 2014) which combine GARCH with a
non-linear computational approach. What is common
to the state-of-the art is that volatility forecasting is
addressed as an univariate and one-step-ahead auto-
regressive (AR) time series problem.

The purpose of our work is twofold. First, we aim to
perform a statistical assessment of the relationships
among the most used proxies in the volatility litera-
ture. Second, we explore a NARX (Nonlinear Autore-
gressive with eXogenous input) approach to estimate
multiple steps of the output given the past output and
input measurements, where the output and the input
are two different proxies. In particular, our preliminary
results show that the statistical dependencies between
proxies can be used to improve the forecasting accu-
racy.

1. Background

Three main types of proxies are available in the lite-
rature : the proxy σSD,n, the family of proxies σi and

σG. The first proxy corresponds to the natural defini-
tion of volatility (Poon & Granger, 2003), as a rolling
standard deviation over a past time window of size n
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σi
t is analytically derived in Garman and Klass (1980).

The proxy σG
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is the volatility estimation returned by a GARCH
(1,1) (Hansen & Lunde, 2005) where εt−i ∼ N (0, 1)
and the coefficients ω, αi, βj are fitted according to the
procedure in (Bollerslev, 1986).

2. The relationship between proxies

The fact that several proxies have been defined for
the same latent variable raises the issues of their sta-
tistical association. For this reason we computed the
proxies, discussed above, on the 40 time series of the
French stock market index CAC40 in the period ran-
ging from 05-01-2009 to 22-10-2014 (approximately
6 years). This corresponds to 1489 OHLC (Opening,
High, Low, Closing) samples for each time series. Mo-
reover, we obtained the continuously compounded re-
turn and the volume variable (representing the number
of trades in given trading day).

Figure 1 shows the aggregated correlation (over all
the 40 time series) between the proxies, obtained by
meta-analysis (Field, 2001). The black rectangles in-
dicate the results of an hierarchical clustering using
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(Ward Jr, 1963) with k=3. As expected, we can
observe a correlation clustering phenomenon between
proxies belonging to the same family, i.e. σi

t and σSD,n
t .

The presence of σ0
t in the σSD,n

t cluster can be explai-
ned by the fact that the former represents a degenerate
case of the latter when n = 1. Moreover, we find a cor-
relation between the volume and the σi

t family.

3. NARX proxy forecasting

We focus here on the multi-step-ahead forecasting of
the proxy σG by addressing the question whether a
NARX approach can be beneficial in terms of accu-
racy. In particular we compare a univariate multi-
step-ahead NAR model σG

t+h = f(σG
t , · · · , σG

t−m) +

ω with a multi-step-ahead NARX model σG
t+h =

f(σG
t , · · · , σG

t−m, σ
X
t , · · · , σX

t−m) +ω, for a specific em-
bedding order m = 5 and for different estimators of
the dependency f .

In particular we compare a naive model (average of
the past values), a GARCH(1,1), and two machine
learning approaches : a feedforward Artificial Neural
Networks (single hidden layer, implemented with R
nnet) and a k-Nearest Neighbors (automatic leave-
one-out selection of the number of neighbors). Multi-
step-ahead prediction is returned by a direct forecas-
ting strategy (Taieb, 2014). The MASE results (Hynd-
man and Koehler (2006)) from 10 out-of-sample eva-
luations (Tashman (2000)) in Table 1 show that both
machine learning methods outperform the benchmark
methods (naive and GARCH) and that the ANN mo-
del can take advantage of the additional information
provided by the exogenous proxy. The results in Table
2 confirm that such conclusion remains consistent
when moving from a single stock time series in a given
market to an index time series (S&P500).

Table 1. MASE (normalized wrt the accuracy of a naive
method) for a 10-step volatility forecasting horizon on a
single stock composing the CAC40 index on the period
from 05-01-2009 to 22-10-2014, for different proxy combina-
tions (rows) and different forecasting techniques (columns).
The subscript X stands for the NARX model where σX is
exogenous.

σX ANN kNN ANNX kNNX GARCH(1,1)

σ6 0.07 0.08 0.06 0.11 1.34
V olume 0.07 0.08 0.07 0.14 1.34
σSD,5 0.07 0.08 0.07 0.09 1.34
σSD,15 0.07 0.08 0.06 0.10 1.34
σSD,21 0.07 0.08 0.06 0.10 1.34
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Figure 1. Summary of the correlations between different
volatility proxies for the 40 CAC40 time series. Note that
the continuously compounded return rt has a very low cor-
relation with all the other variables.

4. Conclusion and Future work

We studied the relationships between different proxies
and we investigated the impact on the accuracy of vo-
latility forecasting of three parameters : the choice of
the exogenous proxy, the machine learning technique
and the kind of autoregression. Results are preliminary
for the moment. For the final version we expect to pro-
vide additional comparisons in terms of the number of
series, forecasting horizons h model orders m.

Table 2. MASE (normalized wrt the accuracy of a naive
method) for a 10-step volatility forecasting horizon on the
S&P500 index on the period from 01-04-2012 to 30-07-2013
as in the work of Dash & Dash, 2016, for different proxy
combinations (rows) and different forecasting techniques
(columns). The subscript X stands for the NARX model
where σX is exogenous.

σX ANN kNN ANNX kNNX GARCH(1,1)

σ6 0.58 0.49 0.53 0.56 1.15
V olume 0.58 0.49 0.57 0.66 1.15
σSD,5 0.58 0.49 0.58 0.58 1.15
σSD,15 0.58 0.49 0.65 0.65 1.15
σSD,21 0.58 0.49 0.56 0.65 1.15
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