
Factor-Based Framework for
Multivariate and Multi-step-ahead
Forecasting of Large Scale Time
Series
Jacopo De Stefani* and Gianluca Bontempi

Machine Learning Group (MLG-ULB), Department of Computer Science, Université Libre de Bruxelles, Brussels, Belgium

State-of-the-art multivariate forecasting methods are restricted to low dimensional tasks,
linear dependencies and short horizons. The technological advances (notably the Big data
revolution) are instead shifting the focus to problems characterized by a large number of
variables, non-linear dependencies and long forecasting horizons. In the last few years, the
majority of the best performing techniques for multivariate forecasting have been based on
deep-learning models. However, such models are characterized by high requirements in
terms of data availability and computational resources and suffer from a lack of
interpretability. To cope with the limitations of these methods, we propose an
extension to the DFML framework, a hybrid forecasting technique inspired by the
Dynamic Factor Model (DFM) approach, a successful forecasting methodology in
econometrics. This extension improves the capabilities of the DFM approach, by
implementing and assessing both linear and non-linear factor estimation techniques as
well as model-driven and data-driven factor forecasting techniques. We assess several
method integrations within the DFML, and we show that the proposed technique provides
competitive results both in terms of forecasting accuracy and computational efficiency on
multiple very large-scale (>102 variables and > 103 samples) real forecasting tasks.

Keywords: multivariate forecasting, multi-step-ahead forecasting, large scale forecasting, dimensionality
reduction, dynamic factor models, nonlinear forecasting, scalability

1 INTRODUCTION

The pervasiveness of interconnected devices (IoT) and the consequent big data revolution are
shifting the focus of forecasting to problems characterized by very large dimensionality (n > 100, . . . ,
1,000), non-linear cross-series dependencies and long forecasting horizons. However, most
multivariate forecasting methods in the literature are restricted to low dimension (n < 10)
vector time series, linear forecasting techniques and short horizons.

The most common approaches to multivariate forecasting are model-driven and data-driven
(Januschowski et al., 2020). Model-driven approaches include vector regressions (VAR, VARMA,
VARIMA, VARMAX) (Lütkepohl, 2005) and kernel-based regression (Exterkate et al., 2016). Vector
AutoRegressive (VAR) models showed a good capability in capturing linear dependencies in applied
domains (e.g. wind farm) (Cavalcante et al., 2017). The authors of (Zhao et al., 2018) proposed a
correlation constrained and sparsity controlled VAR to reduce the effective number of parameters in
model training. However, the main VAR-based model drawback is the parameter size growth at the
increase of the lag sample and dimension of the task. Data-driven approaches (notably machine

Edited by:
Dimitrios Tsoumakos,

National Technical University of
Athens, Greece

Reviewed by:
Frederico Guimaraes,

Federal University of Minas Gerais,
Brazil

Matteo Iacopini,
Vrije Universiteit Amsterdam,

Netherlands

*Correspondence:
Jacopo De Stefani

jacopo.de.stefani@ulb.ac.be

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 02 April 2021
Accepted: 10 August 2021

Published: 10 September 2021

Citation:
De Stefani J and Bontempi G (2021)

Factor-Based Framework for
Multivariate and Multi-step-ahead

Forecasting of Large Scale
Time Series.

Front. Big Data 4:690267.
doi: 10.3389/fdata.2021.690267

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902671

ORIGINAL RESEARCH
published: 10 September 2021

doi: 10.3389/fdata.2021.690267

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.690267&domain=pdf&date_stamp=2021-09-10
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/full
http://creativecommons.org/licenses/by/4.0/
mailto:jacopo.de.stefani@ulb.ac.be
https://doi.org/10.3389/fdata.2021.690267
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.690267

learning) proposed feature-based and representation-based
techniques to deal with large-variate settings. Feature-based
techniques are based on a multivariate extension of well
known univariate forecasting techniques such as k-nearest
neighbors (Talavera-Llames et al., 2019) or Support Vector
(Wang et al., 2020). Such techniques tend to augment the
dimensionality of the original data by adding expert-driven
combinations of the original features. However, the time
required to identify such features and the overhead introduced
by the presence of additional features hinders the applicability of
such techniques, especially for large dimensions. For this reason,
representation based Deep-Learning (DL) methods have been
more and more adopted because of their success in modeling
non-linear dynamic cross dependencies between variables. In
particular, Recurrent (Agarwal et al., 2020; Smyl, 2020;
Hewamalage et al., 2021) and Convolutional Neural Networks
(Sen et al., 2019) are the most promising models for predicting
multivariate time series. Unfortunately, the training process of
such models is characterized by a heavy computational load and a
need for specialized hardware making them unsuitable for large-
scale settings. Moreover, the lack of interpretability of the model
and the automatically determined features hinders the extraction
of useful information concerning the relevant variables for
forecasting.

To cope with the limitations of the existing approaches, we
propose an extension of DFML (Bontempi et al., 2017; De Stefani
et al., 2018), a hybrid forecasting technique inspired by the
Dynamic Factor Model (DFM) approach, a successful
forecasting methodology in econometrics (Forni et al., 2005).
This paper is an extension and generalization of the original
DFML work and addresses three main aspects: factor estimation,
factor forecasting and factor recombination. Factor estimation
returns a limited number of latent components (factors) from the
original series, on which the forecast is performed. Then, the
forecasts of the factors are transformed back to the original
dimension to obtain the original forecast. The rationale of this
approach is to reduce a high-dimensional multivariate problem to
a small set of independent univariate problems, thus simplifying
the forecasting task. To the best of our knowledge, this paper is
the first systematic comparison of data-driven and model-driven
strategies for factor estimation and factor forecasting for
multivariate multi-step-ahead forecasting in a very large scale
setting (>102 variables and > 103 samples).

In particular, the main contributions of this manuscript are:

• A novel modular and extensible framework for multivariate
and multi-step-ahead forecasting combining data-driven
techniques and model-driven techniques in a Dynamic
Factor fashion.

• The assessment of the impact on the DFML accuracy of
several methods for factor estimation, including both
traditional and Deep Learning based techniques on
real data.

• The assessment of the impact on the DFML accuracy of
several methods for factor forecasting, including state-of-
the-art techniques from both the statistical and machine
learning field, on real data.

This work is organized as follows: Section 2 discusses the
theoretical framework of time series forecasting. Section 3
introduces the extensions to the DFML framework and its
components. Section 4 presents the benchmark setup while
Sections 5 and Section 6 summarize and discuss the main
experimental results, respectively. Section 7 concludes the
paper outlining some future perspectives.

2 MATERIALS AND METHODS

2.1 Mathematical Notation
A univariate time series is represented by a vector y of size N
whereN is the number of samples and yt is the time series value at
time t � 1, . . . , N. A multivariate time series is a collection of
historical observations of n variables sharing the same time index,
and represented by a matrix Y, with N rows and n columns. The
jth column of Y, denoted with Y [j], is the univariate time series
associated to the jth variable, j � 1, . . . , n. In the following we will
denote matrices in upper-case letters (e.g. Y) and scalars either in
lower-case (e.g. yt) or with the index notation (e.g. Yt [j]) (cf.
Table 1).

2.2 Time Series Forecasting
Time series forecasting deals with the prediction of the future
values of a given quantity of interest (a certain time series y), given
a set of N historical observations. A comprehensive overview of
the different time series forecasting tasks is presented in Figure 1.

In the univariate one-step-ahead form, this problem is
formulated as the estimation of a Single-Input, Single-Output
(SISO) auto-regressive mapping f : Rm1R

yt+1 � f (yt−d , . . . , yt−d−m+1) + et+1 (1)

where e is the noise term, d ≥ 0 is the delay andm > 0 is called the
embedding lag. An embedding procedure represents a time series
y as a set of input-output pairs (y(I), yt+1) with y(I) being the m-
dimensional [yt−d, . . . , yt−d−m+1] input vector. This formulation is
general since it can be employed for estimating both a linear
(AR) and a nonlinear mapping (NAR) and enables the adoption
of supervised machine learning algorithms (Bontempi et al.,
2013). In what follows, for the sake of simplicity, we will
assume d � 0.

2.2.1 Multi-step-ahead Univariate Forecasting
A multi-step-ahead univariate forecasting consists of predicting
the next H > 1 values of a time series.

TABLE 1 | Notation table.

Notation Meaning

n Number of variables
N number of observations
Y matrix of observations of size [N, n]
Y [t, ·] n dimensional vector denoting the time series value at time t
d delay
m autoregressive lag
H forecasting horizon

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902672

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Strategies for predicting univariate time series multi-step
ahead have been extensively discussed in (Ben Taieb et al.,
2010; Ben Taieb et al., 2012; Bontempi et al., 2013) and can be
summarised into two main classes: single output and multiple
output strategies.

Instances of the first class are the Iterated and the Direct
strategy. The Iterated (or Recursive) strategy (Weigend and
Gershenfeld, 1994; Cheng et al., 2006; Sorjamaa et al., 2007)
learns a one-step-ahead model fREC: R

m1R

yt+1 � fREC(yt , . . . , yt−m+1) + et+1 (2)

and then uses it recursively H times to return a multi-step-ahead
prediction. Though the iterated method is highly sensitive to the
estimation error, it has been often used to forecast real-world time
series (McNames, 1998; Saad et al., 1998; Bontempi et al., 1999).

The Direct strategy (Weigend and Gershenfeld, 1994; Cheng
et al., 2006; Sorjamaa et al., 2007) learns independently Hmodels
fh: R

m1R, h � 1, . . . , H

yt+h � fh(yt , . . . , yt−m+1) + et+h (3)

and returns a multi-step-ahead forecast by concatenating the H
predictions. Since the Direct strategy does not use any estimated
value as input, it is not prone to the accumulation of one-step-
ahead errors. Notwithstanding, no statistical dependencies
between the predictions (Kline, 2004; Bontempi, 2008;
Bontempi and Taieb, 2011) is considered and these methods
often require higher functional complexity (Tong, 1983) than
iterated ones in order to model the dependency between two
distant instants (Guo et al., 1999).

The Multi-Input Multi-Output (MIMO) strategy (Bontempi,
2008; Bontempi and Taieb, 2011) (also known as Joint strategy
(Kline, 2004)) avoids the simplistic assumption of conditional
independence between future values made by the Direct strategy
(Bontempi, 2008; Bontempi and Taieb, 2011) by learning a single
multiple-output model

[yt+H , . . . , yt+1] � FJ(yt , . . . , yt−m+1) + E (4)

where FJ : R
m1RH is a vector-valued function (Micchelli and

Pontil, 2005), and E is a noise vector whose covariance is not
necessarily diagonal (Matías, 2005). TheMIMO strategy avoids the
conditional independence assumption made by the Direct strategy
as well as the accumulation of errors of the Iterated strategy. So far,
this strategy has been successfully applied to several real-world
multi-step time series forecasting tasks (Bontempi, 2008; Ben Taieb
et al., 2009; Ben Taieb et al., 2010; Bontempi and Taieb, 2011).

2.2.2 Multivariate Forecasting
Here we extend the notions of the previous section to multivariate
forecasting, taking into account possible cross dependencies
among the time series. According to (Januschowski et al.,
2020) there are three main approaches to deal with a
multivariate forecasting problem: local modeling, global
modeling and hybrid modeling.

In local modeling, the multivariate forecasting task is
decomposed into a set of n SISO or MISO tasks. In the case
of SISO tasks, each of the n forecasting tasks is treated as an
independent problem, thus ignoring the cross dependencies with
the other series. In the case of MISO tasks, multiple series can be
used as input covariates to forecast a single time series.

Yt+1[1] � f1 Yt[1], . . . ,Yt−m+1[1], . . . ,(
Yt[n], . . . ,Yt−m+1[n]) + et[1]

«
Yt+1[n] � fn Yt[1], . . . ,Yt−m+1[1], . . . ,(

Yt[n], . . . ,Yt−m+1[n]) + et[n]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(5)

where fi : R
m×n1R, i � 1, . . . , n. Although the choice of ignoring

cross dependencies (partially, in the case of MISO task or totally,
in the case of SISO) might seem disadvantageous at a first glance,
it allows to greatly reduce the model complexity, thus reducing
the variance of the model and its computational learning time.

FIGURE 1 | Summary of the different time series forecasting problems and the corresponding tasks. AR indicates an autoregressive hypothesis [i.e. the forecast
uses only the information from the past of the considered time serie(s)], while ARX indicates the presence of external regressors.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902673

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Moreover, the local models could potentially be trained in
parallel, thus improving even more the efficiency of the
training. Due to this reduced computational complexity, local
models are often used as benchmarks, and potentially
outperforming more complex techniques [such as in the M4
Competition (Makridakis et al., 2020a)].

In global modeling, the multivariate problem is tackled as a
single MIMO problem, where the model F: Rn×m1RH×n takes
the embedding vectors of the n time series as input and produces
the H-step ahead forecasts

Yt+1 � F(Yt) (6)

Analogously to the univariate case, we may perform the Iterated
one-step-ahead strategy

Yt+1 � FI(Yt , . . . ,Yt−m+1) + Et+1 (7)

or the Direct h-step-ahead strategy:

Yt+h � Fh(Yt , . . . ,Yt−m+1) + Et+h (8)

where FI : Rn×m1Rn represents the single Iterated model, while
Fh: Rn×m1Rn indicates the hth Directed model. Finally, the
MIMO strategy can be extended to the multivariate case as well:

Yt+H / Yt+1[] � FJM(Yt , . . . ,Yt−m+1) + E (9)

with FJM : R
n×m1RH×n being the model jointly providing H-step

ahead forecasts for all the n time series. This model category allows
to properly model the cross-dependencies between the different
time series, by increasing the complexity of the functional
mappings that have to be estimated (cf. Eqs. 7–9). The number
of parameters to be estimated usually grows quadratically (O (n2))
with respect to the number n of input time series, increasing the
computational complexity of the estimation process, and limiting
their application as the number of time series increases.

In order to exploit the advantages, and limit the drawbacks of
both categories, hybrid approaches have been developed, where
both the global and the local approach coexist in different forms.
For example in hierarchical forecasting models (Athanasopoulos
et al., 2017; Taieb et al., 2017; Wickramasuriya et al., 2015),
independent local forecasts are first generated and then brought
together in a reconciliation process, in order to return coherent
global forecasts. Additional approaches adopt kernel-based
methods (Hwang et al., 2016) based on the composition of
local models, as well as neural models integrating both local
components and global components to perform the global
forecast (Sen et al., 2019), or where the output of local models
is used as input for the global models (Smyl, 2020).

Finally, a well-known hybrid model category is constituted by
dynamic factor models (Stock and Watson, 2010), where the
global forecasting problem is reduced to a set of local forecasting
problem on a reduced number of components, via dimensionality
reduction, in a way that the set of components should account for
the variability of the original multivariate time series.

2.3 Dynamic Factor Models
The Generalized Dynamic FactorModel (DFM) is a technique for
multivariate forecasting originating in econometrics (Forni et al.,

2005) [for a detailed review see (Stock and Watson, 2010)]. The
basic idea of DFM is that a small number of series (the factors)
can account for the time behavior of a much larger number of
variables. Such factors are latent, i.e., not directly observable and
have to be estimated from the original data. Once estimated, they
can be can be forecast instead of the original series, reducing the
complexity of the multivariate forecasting process. In more
formal terms:

Yt+1 � WZt+1 + EY ,t+1 (10)

Zt+1 � ∑m−1

i�0
(At−iZt−i) + EZ,t+1 (11)

where Zt is the vector of unobserved factors of size q (q < <n), Ai

are q × q coefficient matrices,W is the matrix (n × q) of dynamic
factor loadings and the disturbances terms EY, EZ (also called
idiosyncratic disturbances) are assumed to be uncorrelated. The
latent factors follow a vector autoregressive time series process
and usually do not have a direct interpretation with respect to the
original time series. Note that though the seminal work on DFM
adopted a frequency domain approach, we will limit to consider
here the time domain only.

The practical implementation of DFMs demands to address
two main issues: the estimation of the factors (including their
number) and the forecasting of their evolution. According to
Stock and Watson (2010) there are three main ways to estimate
dynamic factors in literature: the first employs parametric
estimation (e.g. maximum likelihood), the second makes use
of non-parametric methods (e.g. PCA) and the third relies on
Bayesian estimation. In this paper, we will restrict to consider
non-parametric methods, both linear (PCA, for which
consistency was proved (Stock and Watson, 2010)) and non-
linear. In this case, the estimation of the number of components
typically relies on visual diagnostics (e.g. scree plots) or
information criteria. As far as forecasting is concerned, both
one-step-ahead and multi-step ahead forecasting based on VAR
have been proposed in the econometric literature. Multi-step-
ahead typically adopts either iterated or direct linear strategies
(Section 2.2.1). For an extended study on the use of DFM and
PCA for the forecasting of 149 monthly macroeconomic variables
we refer the reader to Stock and Watson (2002).

3 THE DYNAMIC FACTOR MACHINE
LEARNER FRAMEWORK

The DFM rationale is that, if a forecaster is able to obtain accurate
estimates of factors, then the task of forecasting could be simplified
substantially by using the estimated dynamic factors for
forecasting, instead of using all n original series themselves.
Moreover, when n > 102 the dimensionality reduction process
allows the forecasting process to become tractable with standard
statistical tools, often inapplicable for larger dimensions. The final
forecasting performance depends mainly on two aspects: the factor
estimation algorithm and the accuracy of the factor forecasting.

In (Bontempi et al., 2017; De Stefani et al., 2018) the authors
proposed a machine learning extension of the DFM (called

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902674

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

DFML—Dynamic Factor Machine Learner) which 1) relies on a
linear (PCA) or nonlinear (autoencoder) technique for
dimensionality reduction and 2) forecasts each factor
independently using a nonlinear model and a univariate multi-
step-ahead forecasting strategy by using out-of-sample
assessment. Here, we propose a further extension of the
DFML framework, in order to include state-of-the-art
components in both the factor estimation and the factor
forecasting component. The factor estimation component is
augmented by including additional non-linear techniques,
namely deep feed-forward neural networks and recurrent
neural networks encoder-decoder architectures based on
LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho
et al., 2014) units.

The factor forecasting component is improved by the addition
of well-known statistical forecasting techniques, such as those
employed as benchmarks for the M4 competition (Makridakis
et al., 2020a), namely Exponential Smoothing (Holt, 2004), Theta
method (Assimakopoulos and Nikolopoulos, 2000), and a
statistical ensemble technique of these benchmarks, as well as
machine learning based techniques, such as MIMO lazy-learning
technique (Bontempi and Taieb, 2011) and gradient boosting
based techniques [such as LightGBM (Ke et al., 2017), among the
top performers in the M5 competition (Makridakis et al., 2020b].

Overall, many compositions of linear/non-linear factor
estimation and linear/non-linear forecasting are implemented
and assessed. High variate multi-step forecasting is indeed one
of the most challenging tasks in data science and requires an
extremely careful management of the bias/variance trade-off by
exploring several alternatives in series encoding and forecasting.
For instance a non-linear recurrent factor estimation technique
could reduce bias (yet increasing variance) in case of nonlinear
low noise dynamics while more conventional statistical
techniques may be effective in guaranteeing a lower variance

(at the cost of a bias increase) in noisy settings with small number
of samples.

The architecture of the DFML, and the comparison with the
other models is depicted in Figure 2. It is worth noting that the
factor estimation and the factor forecasting modules 1) follow an
encoder-decoder like structure (Sutskever et al., 2014) and 2) the
two components are decoupled from one another, easily allowing
to further extend the architecture by plugging in new components
and 3) the complexity of the forecasting step is made
independent of n.

3.1 Factor Estimation
The problem of factor estimation involves the determination of a
number of factors q, smaller than the original number of time
series n, such that these factors give a good approximation of the
dynamics of the original data. A common approach to produce an
estimation of the factor is through dimensionality reduction
procedures. A dimensionality reduction procedure assumes
that the original multivariate N × n time series Y can be
represented in a q < n dimensional space while retaining as
much informative content as possible about the original
dynamics. The lower dimension data will then be represented
by the Z matrix, having dimensions N × q. Multiple techniques
have been developed throughout the years, concerning
dimensionality reduction, making both linear assumption
about the structure of the lower dimension subspace [e.g. PCA
(Hotelling, 1933)], as well as non-linear assumptions [e.g kernel
PCA (Schölkopf et al., 1998), autoencoders (DeMers and Cottrell,
1993)] [for a detailed review see Van Der Maaten et al. (2009)]. In
this paper we implement three families of dimensionality
reduction methods: techniques that do not take into account
temporal dependencies, both linear (Section 3.1.1) and non-
linear (Section 3.1.2), and techniques that take into account
temporal dependencies (Section 3.1.3).

FIGURE 2 | Schema of the DFML architecture with a table summarizing the different components as implemented in the different methods.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902675

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

3.1.1 PCA
PCA transforms the n original variables Y [1], . . ., Y [n] into q
new variables Z [1], . . ., Z [q] (called principal components) such
that the new variables are uncorrelated with each other and
account for decreasing portions of the variance of the original
variables. In other words, PCA performs dimensional reduction
by doing orthogonal rotations of the original observed variables.
The q principal components:

Z[p] � ∑
n

j�1
wjpY[j], p � 1, . . . , q (12)

are defined as weighted sums of the elements of Z with maximal
variance, under the constraints that the weights are normalized
and the principal components are uncorrelated with each other. It
is well-known from basic linear algebra that the solution to the
PCA problem is given in terms of the unit-length eigenvectors of
the correlation matrix of Y. Let us order the eigenvalues λ1 ≥ λ2
≥/ ≥ λn and the corresponding eigenvector in the matrix W of
size n × q. Given the multivariate time series matrix Y, Z [p] � YW
[, p] represents the projection of the series on the pth principal
component.

Though PCA has been developed originally for independent
Gaussian observations, it has been found to be useful also in time
series, the most common type of non-independent data. (Jolliffe,
2002). shows that, when PCA is not employed to perform
statistical inference (as it is the case of forecasting), non-
independence of data should not limit the usage of PCA. The
main difference, with non-independent data, is that, while in
conventional PCA covariance is computed between variables
measured at the same time, in time series it is possible to
compute also covariances to model dependencies between
variables at different times. (Tsay, 2014). provides an example
of application of PCA directly on multivariate time series as well
as to the residuals of fitted VAR models, showing its capabilities
to find some stable relationships between variables.
(Papadimitriou et al., 2005), on the other hand provides an
example of summarizing multivariate time series in a
streaming setting.

3.1.2 Feed-Forward Autoencoders
Feed-forward autoencoders are a specific category of neural
networks trained to learn identity mapping from inputs to
outputs (Vincent et al., 2010). Their architecture is
characterized by having an input and output layer with the
same number of nodes (corresponding to the number of
original dimensions n) and by the composition of two
symmetrical sub-networks: an encoder

Zt � fθ(Yt) (13)

that transforms n-dimensional inputs Yt into some latent
(encoded) q-dimensional representation Zt, and a decoder

Ŷ t � gθ′(Zt) (14)

that reconstructs an n-dimensional approximation Ŷ t of the
input Yt on the basis of the latent q-dimensional feature Zt.
The two sub-networks are composed solely of feed-forward

connections among the layers and might be composed of one
or more hidden layers. The networks are usually trained as a
single joint network (i.e. the output of the encoder is used as input
of the decoder) using gradient descent techniques such as
backpropagation, with the objective of minimizing the mean-
squared error between the input and the output (Vincent et al.,
2010). In their simplest form, the mappings fθ and gθ′ are linear
functions of the inputs and the encoded features Zt closely related
to the PCA principal components (Bourlard and Kamp, 1988). If
the hidden layers are non-linear, autoencoders behave very
differently from PCA, with the ability to capture multi-modal
aspects of the input distribution (Bengio, 2009; Vincent et al.,
2010). In this paper we will consider two types of autoencoder, the
base version having only one hidden layer in both the encoder
and the decoder (henceforth base), and a version having two
hidden layers in both the networks (called deep).

3.1.3 Recurrent Autoencoders
Recurrent Neural Networks (RNN) is a state-of-the-art neural
network approach (see (Hewamalage et al., 2021) for a detailed
review) where the presence of recurrent connections (i.e. allowing
loops in the connection graphs between nodes) allow the
modeling of dynamic temporal dependencies. In their simplest
form (Graves, 2012), the recurrent connections come from a
hidden state Ht, which is also used for predicting future values Yt:

Ht � σ(WHYYt−1 +WHH Ht−1 + BH) (15)

Yt �WYHHt + BY (16)

The matrices WHY, WHH, WYH represent respectively, the
connections between hidden layer H and output layer Y and
the recurrent connections on the hidden layer, while BH and BY
indicate the biases of the two layers, respectively. Weights and
biases are the learnable parameters of the network, typically by
gradient descent algorithms such as backpropagation through
time. A nonlinear activation function σ (generally a sigmoid
function σs(x) � 1

1+e−x or an hyperbolic tangent σ t(x) � e2x−1
e2x+1)

allows the modeling of nonlinear dependencies, while the
recurrent connections allow the modeling of long-term
temporal dependencies. For more details concerning
backpropagation through time (BPTT) and the internal
structure of recurrent cells, we refer the interested reader to
Graves (2012). Without loss of generality, the encoder-decoder
architecture presented in Section 3.1.2, can be applied with
recurrent neural networks:

Zt � fθ(WZHHt + BY) (17)

H′
t � σ(WH′ZZt−1 +WH′H′H′

t−1 + B′H) (18)

Ŷ t � gθ′(WYHHt + BY) (19)

Where the encoder (Eq. 15 and Eq. 17) and decoder network (Eq.
18 and Eq. 19) will have independent weight and biases matrices.
This encoder-decoder architecture is often referred as a sequence-
to-sequence (S2S) (Sutskever et al., 2014) model in the literature
(Hewamalage et al., 2021). Variations of this architecture (with
multiple hidden layers and specific attention mechanisms) have
been effectively used in the framework of time series forecasting
(Du et al., 2020) and (Bianchi et al., 2017). Additionally, a

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902676

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

theoretical study of the sequence-to-sequence framework for time
series forecasting, allowing to determine theoretical bounds have
been performed by (Kuznetsov and Mariet, 2018). Last but not
least, recurrent encoder-decoder architectures have been
effectively employed for dimensionality reduction in the signal
processing field (Yang et al., 2020), (Susik, 2020).

For these reasons, we assess in this paper two recurrent
autoencoders based on LSTM (Hochreiter and Schmidhuber,
1997) and GRU (Cho et al., 2014) units, respectively. The
choice is motivated by the fact that in the extensive study
(Bianchi et al., 2017) concluded that gated units (such as LSTM
and GRU) outperform other recurrent methods when the
temporal dependencies can be non-linear and abrupt, and
that there is no clear outperformance of LSTM over GRU,
or vice versa. Both the LSTM and the GRU autoencoder are
implemented as a three layer network: input, hidden and
output layers. Both the input and output layer have a
number of neurons equal to the number of input time
series, a sigmoid activation function and fully connected to
the hidden layer. The hidden layer is constituted of a number
recurrent cells (LSTM or GRU) equal to the number of factors
to estimate.

3.2 Factor Forecasting
Once the factors estimated, a forecasting of Zt is required in order
to produce the forecasts for the original series Ŷ . It should be
noted that, though some dimensionality reduction methods (cf.
Section 3.1.1) produce decorrelated factors, effectively
transforming the original MIMO task into q SISO forecasting
problems; this does not apply to all the factor estimationmethods.
For this reason, in this paper, we considered both univariate and
multivariate factor forecasting techniques, considering state-of-
the-art techniques from both the statistical and the machine
learning domain (Januschowski et al., 2020).

3.2.1 Statistical Techniques
Statistical techniques [also called model-driven techniques
(Januschowski et al., 2020)] usually define a series of
assumptions on the available data, in order to provide a
closed-form formulation of the model of the dependency
between input and output. We consider here Exponential
Smoothing, Theta and Combined method, Single Input -
Single Output (SISO) techniques for one-step-ahead
forecasting as well as VAR, a Multi Input - Multi Output
technique (MIMO) for one-step-ahead forecasting. All those
models can be adapted for multi-step-ahead forecasting by
implementeing a recursive strategy (Section 2.2). The rationale
for considering statistical techniques is that in several forecasting
competitions on real-world data (Hyndman, 2020) simple
forecasting techniques tend to outperform more complex
methods.

3.2.1.1 Exponential Smoothing (ES)
Exponential smoothing is a family (Hyndman and
Athanasopoulos, 2018) of SISO forecasting methods, originally
introduced in (Holt, 2004), in which the forecasts are computed
as a weighted average of the past values and weights decay

exponentially with time. In simple exponential smoothing
(SES), the forecasts are produced by.

ẑt � (1 − α) zt−1 + αẑt−1 � ∑t

i�1α(1 − α)i−1zt−i (20)

0≤ α≤ 1 (21)

where zt and ẑt are the value and the forecast of the factor z,
respectively. The basic method has been extended in to include
the historical trend of the time series as well as the presence of
seasonality, in both an additive and multiplicative form (Gardner,
1985; Gardner, 2006), leading to the Holt-Winters and the Holt-
Winters Damped techniques.

3.2.1.2 Theta
The Theta method (Assimakopoulos and Nikolopoulos, 2000) is
based on the combination of multiple one-step ahead SISO
individual forecasters, called Theta-lines. Each Theta-line y″t,ϑ
is constructed by taking a second-order approximation of the
original time series, with a specific coefficient ϑ. The final forecast
is returned by averaging the forecasts produced by the different
theta lines.

z″t,ϑi � ϑizt″ � ϑi(zt − 2zt−1 + zt−2) with 0≤ ϑi ≤ 1, t ≥ 2 (22)

ẑt � 1
Nϑ

∑
i

z″t,ϑi (23)

The Theta ensemble composed by two lines, with the ϑi
coefficients being respectively equal to 0 and 2, despite its
simplicity, outperformed all the competitors in the M3 real-
world forecasting competition (Hyndman, 2020) and has been
selected as benchmark method for the M4 forecasting
competition.

ẑt � 1
2
(z″t,0 + z″t,2) (24)

In (Hyndman and Billah, 2003) the author demonstrated the
equivalence of the Theta method to a specific form of the
exponential smoothing format, in which the drift parameter is
half the slope of a linear regression fitted to the data.

3.2.1.3 Combined
Combined (also called Comb) is an ensemble method based on
the combination of three SISO one-step-ahead exponential
techniques (Gardner, 1985): Single Exponential Smoothing for
capturing the level, Holt to linearly extrapolate, and Damped to
dampen the linear trend. The combination of the models is
obtained by averaging the three outputs

ẑt � 1
3
(ẑt,SES + ẑt,Holt + ẑt,Damped) (25)

For a detailed description of the methods, we refer the interested
reader to the relevant reviews (Gardner, 1985; Gardner, 2006).
Unlike Theta, Combined implements an ensemble of
heterogeneous forecasting methods, each capturing a different
characteristic of the original time series. Like Theta, Combined
has been used as benchmark during the different M competitions
(Makridakis et al., 2020a).

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902677

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

3.2.1.4 Vector Autoregressive
The Vector AutoRegressive model (VAR) is a one-step ahead
MIMO model which expresses Zt as a linear combination of the
past values Zt−i of the series with coefficient matrices Ai plus an
error vector termWt. The numberm of considered autoregressive
dependencies is also called order of the VARmodel. In a compact
form the model is:

Zt � ∑
m

i�1
AiZt−i +Wt+1 (26)

where At−k+1, k � 1, . . . , m is a time-invariant coefficient matrix
of size q × q and E [W (j)] � 0, j � 1, . . ., n. VAR and state space
models have been shown to be equivalent in (Gilbert, 1993).
VAR rely on the assumption of stationarity and are typically not
suitable for large variate settings (e.g. n > 20) because of the high
number of parameters to estimate (mn2, corresponding to m Ak

matrices). For this reasons, we considered the VAR technique as
factor forecasting technique inside the DFML, with the number
of factors q being small, but not as benchmark for the original
problem, where the number n of variables is too large to make
the problem computationally tractable. Like the previous
methods, multi-step ahead forecasts are produced from this
one-step-ahead method through the Recursive strategy.

3.3 Machine Learning Based Techniques
Machine learning techniques (or data-driven techniques in
(Januschowski et al., 2020)) do not make any parametric
assumptions on the data distribution. In this category, we will
consider lazy learning (i.e. a single model technique) (Ben Taieb
et al., 2012) and gradient boosting (an ensemble technique) (Ke
et al., 2017). Those models can be used for multi-step-ahead
forecasting both via a Recursive and a Iterative strategy (cf.
Section 2.2). Additionally, we consider a SIMO
implementation of the lazy learning model Joint (Bontempi
and Taieb, 2011), in which all the h steps to be forecast are
returned by a single model.

3.3.1 Lazy Learning
A lazy learning technique (Aha, 1997) delays the learning phase
until the prediction time. In other words, these techniques
perform a fit of the model only when a prediction is required
by using a computationally efficient technique (e.g. linear). This
entails a considerable reduction in the computational cost of the
model, while still preserving a good accuracy.

In order to apply local learning tomulti-step time series
forecasting, the time series Zt is embedded into a dataset DN,
made up of pairs (X[t],Y

H
[t]), where X[t], is a temporal pattern of

length m including the samples [Zt, . . ., Zt−m−1], and the vector
YH
[t], is the consecutive temporal pattern of lengthH, i.e. the vector

[Zt+H, . . ., Zt+1]. In our case, the predictive model is a local
weighted regression algorithm (Birattari et al., 1999), where the
h step ahead prediction of a given sample Ŷ

h
k is computed as the

average of the k most similar samples to the considered sample:

Ŷ
h

k �
1
k
∑
k

j�1
YH

[j] (27)

Where YH
[j] is the output vector of the jth closest neighbor. The

similarity is defined in terms of a distance metric (e.g. a euclidean
distance). The number of neighbors k used for the prediction is
selected byminimizing the mean squared error with respect to the
available values.

In (Bontempi and Taieb, 2011) the authors proposes a MIMO
version of lazy learning for forecasting where the number k of
neighbours is selected through minimization of an estimation of
the h step forecasting error over a leave-one-out cross-validation
procedure. The adoption of a k-nearest neighbors lazy learning
technique in this study is motivated by two reasons: the reduced
computational cost and the capability of the model to exploit local
patterns in the data.

3.3.2 Gradient Boosting
Boosting aims to create an accurate forecaster by combining
several “weak learners” models [i.e. models characterized by a
high bias, and a low variance (Schapire, 1990)]. A boosted
ensemble is constructed in a sequential manner, employing a
weighting scheme of the samples of the dataset. The first model of
the ensemble is defined as a simple average of the available
samples m[0](z) � 1

N∑N
i�1zi and the weights for all the samples

are initialized to the same values. Then, the model is updated via a
linear combination, between the learner l[j](z) estimated at
iteration j, and the model constructed at the previous iteration
m[j−1](z), weighted by the coefficient] ∈ [0, 1]:

m[j](z) � m[j−1](z) +]l[j](z) (28)

The weights associated with each sample are adapted in a way to
increase the weights to those values that have been wrongly
predicted. The process is repeated for the desired number of
iterations (J in this case), and then the final prediction ẑt is
computed as a weighted sum of the different learners.

ẑt � m[J](z) � m[0](z) +∑j

j�0]l
[j](z), (29)

The gradient aspect of a gradient boostingmethod is related to the
fact that the sample weight update procedure is performed via a
minimization procedure of a given error metric, performed via
gradient descent. Moreover, when the chosen error metric is the
mean squared error (also called quadratic loss), the gradient
boosting procedure is equivalent to training each subsequent
model in the ensemble on the residuals of the previous model. For
more details concerning the inner workings for the model we
refer the interested reader to (Taieb, 2014).

In this paper we include LightGBM (Ke et al., 2017), a
gradient-boosted based algorithm specifically optimized to deal
with a large number of data instances and a large number of
features respectively, implemented with both a Direct and
Recursive strategy.

4 EXPERIMENTAL SETUP

The experimental study assesses and compares several
implementations of the DFML, composing the different factor
estimation techniques and factor forecasting techniques discussed

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902678

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

in the article. Note, that for the sake of a robust assessment, we set the
lag to m � 3 and the number of latent factors to q � 3 for all the
considered methods. In order to improve the readability of the
results, we employ the following naming convention: the prefixDF is
used to indicate a dynamic factor based model, whereas the UNI
prefix is used to indicate the benchmark, univariatemethods used for
comparison. In both cases, the prefix is followed by the name of the
employed forecasting technique.

4.1 Benchmarks
Themajority of benchmark techniques used in this article is based on
a univariate decomposition of the original n-dimensional MIMO
task into n SISO forecasting tasks. The motivation of this choice is
twofold. On one hand, several forecasting competitions based on real
data clearly showed the competitiveness of this approach, despite
their simplicity (Hyndman, 2020). On the other hand, for several
state-of-the-art multivariate techniques a MIMO implementation is
either unavailable or computationally intractable due to a large
number of variables (e.g. VAR) or the computational cost (e.g.
deep learning based methods). Besides the Exponential Smoothing
(UNI-ES), the Theta (UNI-Theta) and the Combined (UNI-Comb)
we consider the Naive model

Ŷt � Yt−1 (30)

a random walk model returning as prediction the latest observation.
Despite its trivial nature, in real-world tasks the Naive method is
known to outperformmore complex learning strategies, especially in
presence of continuous sequences of constant values: for that reason
it is considered as a baseline to normalize all our accuracy results in
Section 4. The methods above are implemented with the code
provided for the M4 competition (Center, 2020).

The other multivariate benchmarks are the original Dynamic
Factor Model (Forni et al., 2005) (DFM, here DF-PCA-VAR) and
the original DFML (Bontempi et al., 2017; De Stefani et al., 2018)
(DFMLPC, here DF-PCA-Lazy-DIR and DFMLA, here DF-Base-
Lazy-DIR).

4.2 Dynamic Factor Machine Learner
Framework
We test five different factor estimations techniques and nine
different factor forecasting techniques, for a total of 45 different
models. The factor estimation techniques are listed below
together with the software used for the experiments.

• PCA: the implementation uses the basic R functions cov
and eigen.

• base: the base autoencoder is implemented by the rstudio/
keras library. The architecture is symmetric with a single
hidden layer of size q and a ReLU and sigmoid activation
functions are used for the hidden and output layer,
respectively.

• Deep: the deep autoencoder is implemented by the rstudio/
keras library. The architecture is symmetric with three
hidden layers [with sizes (10, 5, q)], a ReLU activation
function for the hidden layer and a sigmoid for the
output layer.

• LSTM: The LSTM autoencoder is implemented by the
rstudio/keras library. The architecture is symmetric with
a single hidden layer (q LSTM cells) and a ReLU and a
sigmoid activation functions for the hidden and output
layer, respectively.

• GRU: The GRU autoencoder is implemented by the rstudio/
keras library. The architecture is symmetric with a single
hidden layer (q GRU cells) and a ReLU and a sigmoid
activation function for the hidden and the output layer,
respectively.

For all the neural-based techniques, the maximum number of
epochs used for the training is set to 50. The factor forecasting
techniques are listed below together with the software used for the
experiments.

• Comb, ES, Naive, Theta: we use the implementations made
available by the M4 competition (Center, 2020). The multi-
step-ahead forecast is obtained with a Recursive strategy.

• VAR: the implementation (Eq. 26) is provided by the vars R
library and a Recursive strategy returns the multi-step-
ahead forecast.

• Lazy-DIR, Lazy-REC, MIMO: these methods denote the
lazy learning (Section 3.3.1) with a Direct, Recursive
and Joint multi-step-ahead forecasting strategy,
respectively. The implementation is made available in
the gbonte/gbcode github library by the
multisteapAhead function with methods lazydir,
lazyiter, mimo respectively.

• LightGBM-DIR and LightGBM-Rec: the implementation is
provided by the lightgbm R library. The Direct and
Recursive strategies for multi-step-ahead forecasting have
been implemented by the authors.

Unless specified otherwise, we employed the default values for
the forecasting techniques hyperparameters in the experiments.
The entire code used to run the experiments is available in (De
Stefani and Bontempi, 2021).

4.3 Datasets
We consider three public datasets related to multivariate
forecasting problems with high dimensionality (>102 variables
and > 103 samples).

• Electricity consumption This dataset contains 26,304
samples of 321 variables. Each variable represents the
hourly electricity consumption in KWh of 321 clients
between 2012 and 2014 (Lai et al., 2018). This dataset
has been obtained by preprocessing the original dataset
(NREL, 2021) in order to remove null time series and to
resample the original data (with a sampling of 15 min) to
have an hourly frequency.

• Traffic usage This dataset contains 17,544 samples of 862
variables, representing 48 months of hourly data from the
California Department of Transportation (Lai et al., 2018).
Each variable measures the road occupancy rates (between 0
and 1) returned by sensors monitoring the San Francisco

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 6902679

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Bay area freeways during 2015–2016 (California
Department of Transport, 2021).

• OBU Mobility data This dataset contains 1,416 samples of
389 variables. Each variable represents the average hourly
occupancy (measured by the number of trucks) of a street in
the Brussels region. The original dataset (Bruxelles Mobilité
and Machine Learning Group - ULB, 2021) has been
preprocessed in order to remove the variables with
variance smaller than 0.2, thus reducing the number of
variables from 4,529 to 388.

4.4 Results Presentation
We consider a rolling window approach (Tashman, 2000) using
a window size of wtr multivariate samples for training, and H ∈
{4, 6, 12, 24} multivariate samples for validation. The window
size wtr is set to 2000 samples for the Electricity and Traffic
datasets, while for the Mobility dataset, the window size is 400 in
order to ensure the feasibility of the rolling approach. It should
be noted that this evaluation technique, proposed in (Tashman,
2000) consists of an extension of the well-known cross-
validation principle for time-dependent data. All the time
series are preprocessed via a z-score normalization (using the
scale R function) and first-order differentiation to de-trend the
data. For each window, a multivariate error measure, the Naive
Normalized Mean Squared Error (NMMSE) is computed as
follows:

NNMSE � 1
n
∑
n

j�1
NNMSE[j] (31)

NNMSE[j] �
1
H
∑H

h�1(YT+h[j] − ŶT+h[j])2
1
H
∑H

h�2(YT+h[j] − YT+h−1[j])2
(32)

where NNMSE averages the univariate NNMSE [j] terms.
The statistical significance of the results is assessed via a Friedman

statistical test (with post-hoc Nemenyi test). For each time series in
the multivariate dataset, the considered forecasting techniques are
ranked according to their values of NNMSE. Then, the average rank
across time series is computed for every forecasting technique and
employed as input for the Friedman test (Demšar, 2006). Finally, the
post-hoc Nemenyi test is employed to assess the statistical
significance of the results of the Friedman test, by determining
the value of the critical difference (CD). Two forecasting techniques
are considered to not have a statistically significant difference if the
difference between their average ranks is smaller than the critical
difference. In the results visualization, the methods are ordered
according to their performance from left to right (the leftmost the
best), while the black bar connects methods that are not significantly
different (at p � 0.05).

We present the results in two formats: 1) a CD plot
highlighting the statistical significance over all horizons and 2)
a tabular format, containing the NNMSE values for different
horizons and grouping the methods according to three categories:
DF-Stat denoting DFM approaches with statistical forecasting,
DF-ML denoting DFM approaches with machine learning
forecasting and UNI-Stat denoting univariate statistical baselines.

5 RESULTS

5.1 Mobility
Figure 3 shows the overall ranking and the corresponding critical
distance according to a Friedman-Nemenyi test (Demšar, 2006).
Tables 2, 3 report the average NNMSE for different horizons and
groups of methods.

From the analysis of the results we can derive the following
considerations:

• Statistical techniques for factor forecasting (DF-Stat
methods) appear among the top 10 methods (Figure 3).

• Across all the horizons, the non-linear autoencoders (base,Deep,
LSTM, GRU) consistently outperform linear factor estimation
techniques (PCA). Also, apart from the top two methods, the
differences are rarely statistically significant (Figure 3).

• DFML strategies consistently outperform the Naive baseline
for different horizons (Tables 2,3).

• The superiority of DFML over UNI-STAT methods (UNI-
ES, UNI-Theta, UNI-Comb) is less clear-cut. Taking into
considerations all horizons DFML is significantly better
than UNI-STAT: nevertheless for large horizons, the
accuracy of UNI-STAT and DFML techniques (both DF-
Stat and DF-ML) tend to converge.

5.2 Electricity
Tables 4,5 report the NNMSE, averaged over all the tests sets.
Figure 4 shows the ranking and the corresponding critical
distance according to a Friedman-Nemenyi test (Demšar,
2006).

On the basis of the results we can make the following
considerations:

• Across all the horizons, DFML with non-linear autoencoders
(base, Deep, LSTM, GRU) is generally among the best methods
(cf. Figure 4). However, some specific factor estimation/
forecasting pairs are consistently among the top performers
[DF-PCA-{LAZY-DIR,LAZY-REC,MIMO} (Bontempi et al.,
2017; De Stefani et al., 2018)].

• Apart from two combinations based on direct gradient
boosting, the top 20s only includes lazy techniques (in
the top 10s) and VAR (in the bottom 10s) (Figure 4).

• DFML techniques generally outperform the Naive
technique and the other univariate benchmarks (UNI-ES,
UNI-Theta, UNI-Comb), also for longer horizons. The only
exception is represented by the integration of recurrent
autoencoders (LSTM, GRU) with statistical techniques
(DF-Stat) which performs worse than the UNI-Stat
benchmarks (Tables 4 and 5).

5.3 Traffic
Tables 6,7 report the NNMSE, averaged over all the tests sets.
Figure 5 shows the ranking and the corresponding critical
distance according to a Friedman-Nemenyi test (Demšar,
2006).

From the analysis of the results we can make the following
considerations:

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026710

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

• The main characteristic among the techniques
outperforming the univariate benchmarks is the use
of a lazy learning technique (either with the Direct
(LAZY-DIR) or the Joint (MIMO) strategy) (Figure 5).

• Another recurring forecasting technique in the top 20s
is the VAR, in combination with both linear and
nonlinear dimensionality reduction techniques
(Figure 5).

• DFML strategies consistently outperform the Naive baseline
(Table 6 and Table 7).

• The combination of lazy learning with a recursive technique
and recurrent autoencoder tends to produce abnormal
values, probably due to error propagation or vanishing/
exploding gradients problems (Table 7).

5.4 Computational Time
The total computational time (in seconds) of the different DFML
techniques is represented in Figures 6,7, representing respectively, the
computational time of the shortest and longest horizon for the dataset
having the largest scale (i.e. Traffic). The total computational time

FIGURE 3 |Mobility—Graphical representation according to (Demšar, 2006) of the results of Friedman statistical test (with post-hoc Nemenyi test) comparing the
NNMSE of the best 20 methods against each other, aggregated across all horizons h. The methods are ordered according to their performance from left to right (the
leftmost the best), while the black bar connects methods that are not significantly different (at p � 0.05).

TABLE 2 | Mobility Naive Normalized MSE for H ∈ {4, 6}. The content of the cell cij represents the model using the jth dimensionality reduction technique with the ith
forecasting method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the proposed method outperforms the Naive method.

H = 4 H = 6

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat
DF-ES 0.554 0.5477 0.5445 0.5583 0.5475 0.5835 0.5786 0.5767 0.596 0.5764
DF-Theta 0.5541 0.5486 0.5445 0.5582 0.5475 0.5835 0.5789 0.5767 0.596 0.5764
DF-Combined 0.5542 0.5481 0.5448 0.5555 0.5472 0.5837 0.5789 0.5766 0.5961 0.576
DF-VAR 0.5514 0.5448 0.5515 0.5467 0.548 0.5789 0.5777 0.5777 0.5795 0.5768

DF-ML
DF-Lazy-DIR 0.5435 0.5471 0.5491 0.6037 0.5454 0.5773 0.5783 0.5765 0.6605 0.6161
DF-Lazy-REC 0.5481 0.5479 0.549 0.609 0.5431 0.5793 0.5785 0.5765 0.6868 0.5748
DF-MIMO 0.5546 0.547 0.5514 0.6197 0.5383 0.6001 0.5784 0.5764 0.6422 0.633
DF-LightGBM-DIR 0.5705 0.5558 0.5489 0.543 0.5506 0.6025 0.5813 0.5816 0.5872 0.577
DF-LightGBM-REC 0.5848 0.5465 0.551 0.5855 0.5491 0.6233 0.5834 0.6039 0.617 0.5796

UNI-Stat
UNI-Naive 1 1 1 1 1 1 1 1 1 1
UNI-ES 0.5494 0.5494 0.5494 0.5494 0.5494 0.5776 0.5776 0.5776 0.5776 0.5776
UNI-Theta 0.5494 0.5494 0.5494 0.5494 0.5494 0.5776 0.5776 0.5776 0.5776 0.5776
UNI-Comb 0.5519 0.5519 0.5519 0.5519 0.5519 0.5794 0.5794 0.5794 0.5794 0.5794

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026711

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

includes the time required to train the factor estimation technique and
the factor forecasting technique, as well as the time required to
generate the forecasts. It should be noted that, while the time
required to estimate the factors varies according to the selected
techniques, the time allocated to factor forecasting (for a given
method) is constant across the different factor estimation
techniques, as they employ the same number of components, and
therefore the same amount of data. Aswe can observe in the figure, the
majority of the computational time is allocated to the factor estimation
technique, with the differences between factor forecasting techniques
being negligible (smaller than 1s). The only exception is represented by
the LightGBM-DIR technique, where the increase in computational
time is justified by the number of models to be trained which is

proportional to the forecasting horizon H. The fastest technique in
terms of computational time is the PCA, while the recurrent based-
autoencoder (GRU and LSTM) are the slowest ones. It should be
noted that, with the selected number of epochs, the upper bound for all
the variants of the DFML is around 75s (Figure 7).

6 DISCUSSION

The idea of employing neural components in the framework of
a dynamic factor model has already been tested by (Nakagawa
et al., 2019) for a MISO one-step-ahead prediction of the
returns in the Japanese stock market and by (Kim et al.,

TABLE 3 | Mobility Naive Normalized MSE for H ∈ {12, 24}. The content of the cell cij represents the model using the jth dimensionality reduction technique with the ith
forecasting method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the proposed method outperforms the Naive method.

H = 12 H = 24

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat
DF-ES 0.6487 0.6427 0.6336 0.6666 0.6349 0.8048 0.8005 0.8017 0.8007 0.7986
DF-Theta 0.6487 0.6426 0.6336 0.6666 0.635 0.8048 0.8005 0.8017 0.8007 0.7987
DF-Combined 0.649 0.6428 0.6336 0.6685 0.635 0.8048 0.8005 0.8017 0.803 0.7986
DF-VAR 0.6343 0.6359 0.6336 0.6392 0.6334 0.7996 0.7999 0.7992 0.7992 0.799

DF-ML
DF-Lazy-DIR 0.6282 0.6334 0.6335 0.7084 0.6345 0.7983 0.7998 0.7987 0.8078 0.7994
DF-Lazy-REC 0.6822 0.6335 0.6328 0.7237 0.634 0.8417 0.7999 0.7997 0.8291 0.7983
DF-MIMO 0.6558 0.6339 0.6369 0.6928 0.6431 0.8079 0.7995 0.7997 0.8086 0.8014
DF-LightGBM-DIR 0.6794 0.6399 0.6352 0.6741 0.6348 0.796 0.7992 0.7979 0.7955 0.7957
DF-LightGBM-REC 0.6798 0.6336 0.6341 0.7254 0.6375 0.8335 0.7993 0.7996 0.8296 0.7967

UNI-Stat
UNI-Naive 1 1 1 1 1 1 1 1 1 1
UNI-ES 0.6334 0.6334 0.6334 0.6334 0.6334 0.7994 0.7994 0.7994 0.7994 0.7994
UNI-Theta 0.6335 0.6335 0.6335 0.6335 0.6335 0.7993 0.7993 0.7993 0.7993 0.7993
UNI-Comb 0.6346 0.6346 0.6346 0.6346 0.6346 0.7997 0.7997 0.7997 0.7997 0.7997

TABLE 4 | Electricity Naive Normalized MSE for H ∈ {4, 6}. The content of the cell cij represents the model using the jth dimensionality reduction technique with the ith
forecasting method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the proposed method outperforms the Naive method.

H = 4 H = 6

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat
DF-ES 0.5418 0.7396 0.6106 0.4415 0.4424 0.6026 0.6314 0.6594 0.4772 0.4928
DF-Theta 0.5436 0.7482 0.6094 0.4416 0.442 0.5681 0.6306 0.6593 0.4772 0.4884
DF-Combined 0.5402 0.7443 0.6116 0.4391 0.4421 0.6024 0.6325 0.6227 0.4773 0.5236
DF-VAR 0.4684 0.7245 0.4463 0.4149 0.4208 0.4692 0.5191 0.5378 0.4369 0.4326

DF-ML
DF-Lazy-DIR 0.3202 0.4561 0.3955 0.4318 0.3773 0.3195 0.3746 0.379 0.4018 0.3751
DF-Lazy-REC 0.3297 0.4904 0.4526 0.439 0.3891 0.336 0.4418 0.432 0.4448 0.4684
DF-MIMO 0.3498 0.4331 0.3959 0.4481 0.3716 0.341 0.3869 0.3823 0.4015 0.388
DF-LightGBM-DIR 0.6249 0.5435 0.5902 0.4426 0.4776 0.6985 0.6227 0.6636 0.4936 0.5117
DF-LightGBM-REC 0.56 0.5395 0.5575 0.4895 0.5166 0.6882 0.5866 0.6103 0.5097 0.5567

UNI-Stat
UNI-Naive 1 1 1 1 1 1 1 1 1 1
UNI-ES 0.5881 0.5881 0.5881 0.5881 0.5881 0.623 0.623 0.623 0.623 0.623
UNI-Theta 0.4722 0.4722 0.4722 0.4722 0.4722 0.499 0.499 0.499 0.499 0.499
UNI-Comb 0.59 0.59 0.59 0.59 0.59 0.6266 0.6266 0.6266 0.6266 0.6266

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026712

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

2019) in the framework of generative modeling for image
reconstruction. However, at the time of writing, to the best of
our knowledge, we are not aware of any study implementing
neural components in the framework of dynamic factor model for
multivariate and multistep ahead forecasting. An additional
contribution is constituted by the extensive study, on multiple
real datasets, of the different compositions of linear and non-
linear factor estimation techniques as well as model-driven and
data-driven factor forecasting techniques. We can summarize the
findings from our experiments with the following considerations:

• About the choice of a factor estimation technique in
DFML: linear techniques seem to be the most
promising ones, both in terms of forecasting accuracy
and computational cost (Figures 4–7). Non-linear
techniques both with and without recurrent
components are comparable in terms of accuracy:
nevertheless, the trade-off between the increase in
accuracy and the overhead in terms of computational
cost (and the consequent energetic overhead) needs to be
carefully taken into account.

TABLE 5 | Electricity Naive Normalized MSE for H ∈ {12, 24}. The content of the cell cij represents the model using the jth dimensionality reduction technique with the ith
forecasting method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the proposed method outperforms the Naive method.

H = 12 H = 24

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat
DF-ES 0.6357 0.7244 0.6648 0.5075 0.5188 0.6793 2.797 0.6316 0.5959 0.5856
DF-Theta 0.5928 0.7261 0.6648 0.5079 0.5183 0.6388 2.7969 0.6313 0.5957 0.5856
DF-Combined 0.6371 0.747 0.6649 0.5115 0.5575 0.6825 3.3199 0.6334 0.5985 0.6162
DF-VAR 0.4744 0.5188 0.4464 0.4496 0.4649 0.5352 2.2798 0.5358 0.5226 0.5227

DF-ML
DF-Lazy-DIR 0.2878 0.4179 0.3615 0.4339 0.4621 0.3307 0.4616 0.451 0.485 0.4691
DF-Lazy-REC 0.3747 0.4957 0.569 0.4682 0.4894 0.4429 0.5979 0.5798 0.569 0.5513
DF-MIMO 0.304 0.4445 0.3656 0.4384 0.4878 0.341 0.457 0.4633 0.491 0.4766
DF-LightGBM-DIR 0.7044 0.641 0.5773 0.5217 0.5494 0.3284 0.4988 0.4403 0.4824 0.4683
DF-LightGBM-REC 0.7427 0.5387 0.5251 0.5267 0.5503 0.842 0.5783 0.8388 0.5647 0.5836

UNI-Stat
UNI-Naive 1 1 1 1 1 1 1 1 1 1
UNI-ES 0.6504 0.6504 0.6504 0.6504 0.6504 0.6746 0.6746 0.6746 0.6746 0.6746
UNI-Theta 0.5295 0.5295 0.5295 0.5295 0.5295 0.5802 0.5802 0.5802 0.5802 0.5802
UNI-Comb 0.6537 0.6537 0.6537 0.6537 0.6537 0.6783 0.6783 0.6783 0.6783 0.6783

FIGURE 4 | Electricity—Graphical representation according to (Demšar, 2006) of the results of Friedman statistical test (with post-hoc Nemenyi test) comparing the
NNMSE of the best 20 methods against each other, aggregated across all horizons h. The methods are ordered according to their performance from left to right (the
leftmost the best), while the black bar connects methods that are not significantly different (at p � 0.05).

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026713

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

• About the choice of a factor forecasting technique in
DFML: there is no clear winner between model-driven
and data-driven techniques. However, two forecasting
techniques, VAR (model-driven) and lazy learning (data-
driven) appear to be consistently in the top performers
across different datasets (Figures 4,5).

• About the choice of a multi-step-ahead forecasting strategy in
DFML: the Direct (DIR) and Joint (MIMO) strategies
consistently outperform the recurrent strategies,
confirming the findings of (Bontempi and Taieb, 2011)
and (Taieb, 2014) (Figures 4, 5).

• In the majority of the experiments, the DFML is
significantly more accurate than the classical DFM
(DF-PCA-VAR)), the Naive baseline and the univariate
benchmarks (Figures 3,4). Note that outperforming a
Naive baseline is not absolutely obvious in multivariate
multi-step forecasting as discussed in publications like
(Paldino et al., 2021).

• Last but not least, depending on the type of forecasting
problem (cf. Section 5.3), univariate factor forecasting
techniques still represent a competitive alternative to
more complex models (Tables 2,3,6,7).

TABLE 7 | Traffic Naive Normalized MSE for H ∈ {12, 24}. The content of the cell cij represents the model using the jth dimensionality reduction technique with the ith
forecasting method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the proposed method outperforms the Naive method.

H = 12 H = 24

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat
DF-ES 0.5786 0.6448 0.583 0.5128 0.5033 0.6083 0.5209 0.5728 0.568 0.5385
DF-Theta 0.5105 0.6089 0.5829 0.5128 0.5037 0.5432 0.5243 0.5728 0.5679 0.539
DF-Combined 0.5792 0.6678 0.583 0.5187 0.5196 0.6097 0.5228 0.5692 0.5881 0.5578
DF-VAR 0.4583 0.4797 0.4958 0.454 0.4453 0.4966 0.5102 0.4993 0.4903 0.4885

DF-ML
DF-Lazy-DIR 0.3823 0.4649 0.4177 0.4307 0.4325 0.4123 0.4799 0.489 0.4568 0.4557
DF-Lazy-REC 0.4723 0.716 0.5079 0.5039 0.5264 0.6572 41.4895 2.3971 0.5305 0.6124
DF-MIMO 0.4211 0.5064 0.4268 0.4469 0.4401 0.4769 0.5116 0.4933 0.467 0.4529
DF-LightGBM-DIR 0.6798 0.6337 0.5732 0.5711 0.5125 0.4182 0.4606 0.4538 0.4577 0.4698
DF-LightGBM-REC 0.8134 0.5839 0.5478 0.4921 0.4648 0.8062 0.7161 0.7522 0.5216 0.5378

UNI-Stat
UNI-Naive 1 1 1 1 1 1 1 1 1 1
UNI-ES 0.5154 0.5154 0.5154 0.5154 0.5154 0.5423 0.5423 0.5423 0.5423 0.5423
UNI-Theta 0.4801 0.4801 0.4801 0.4801 0.4801 0.5167 0.5167 0.5167 0.5167 0.5167
UNI-Comb 0.5206 0.5206 0.5206 0.5206 0.5206 0.5446 0.5446 0.5446 0.5446 0.5446

TABLE 6 | Traffic Naive Normalized MSE forH ∈ {4, 6}. The content of the cell cij represents the model using the jth dimensionality reduction technique with the ith forecasting
method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the proposed method outperforms the Naive method.

H = 4 H = 6

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat
DF-ES 0.5637 0.5819 0.6036 0.4823 0.4788 0.5726 0.4589 0.5386 0.4858 0.4731
DF-Theta 0.5236 0.576 0.6037 0.4823 0.4788 0.5267 0.4583 0.542 0.4857 0.4731
DF-Combined 0.5639 0.5961 0.5731 0.4826 0.5026 0.5729 0.4594 0.5404 0.4835 0.4754
DF-VAR 0.5127 0.6259 0.5115 0.4667 0.4497 0.4718 0.4411 0.4451 0.4538 0.4433

DF-ML
DF-Lazy-DIR 0.3502 0.437 0.4234 0.4303 0.4659 0.3599 0.3455 0.3719 0.4631 0.3711
DF-Lazy-REC 0.4746 0.399 0.4594 0.445 0.4693 0.4532 0.4775 0.5467 0.6137 0.3735
DF-MIMO 0.3793 0.4264 0.4421 0.436 0.5122 0.3949 0.3378 0.3823 0.4588 0.37
DF-LightGBM-DIR 0.7315 0.6496 0.5325 0.4996 0.6158 0.5644 0.4804 0.4823 0.4648 0.559
DF-LightGBM-REC 0.6973 0.7253 0.6136 0.4998 0.6084 0.6133 0.5077 0.5237 0.5113 0.5183

UNI-Stat
UNI-Naive 1 1 1 1 1 1 1 1 1 1
UNI-ES 0.5157 0.5157 0.5157 0.5157 0.5157 0.5062 0.5062 0.5062 0.5062 0.5062
UNI-Theta 0.4731 0.4731 0.4731 0.4731 0.4731 0.4645 0.4645 0.4645 0.4645 0.4645
UNI-Comb 0.5226 0.5226 0.5226 0.5226 0.5226 0.5129 0.5129 0.5129 0.5129 0.5129

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026714

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Further experiments are foreseen to understand the impact
of hyperparameters like the number of components q or the
embedding order of the machine learning models m. In
addition, the choice of problem specific neural network

architecture, fine-tuning of the parameters, as well as
longer training times could further improve the
performances of the neural-based techniques, if the
problem setting allows it.

FIGURE 6 | Traffic—Boxplots representing the distribution of the computational time (in s) across the different rolling windows for the shortest horizon (H � 4). Each
column in the grid represents a different factor estimation technique.

FIGURE 5 | Traffic—Graphical representation according to (Demšar, 2006) of the results of Friedman statistical test (with post-hoc Nemenyi test) comparing the
NNMSE of the best 20 methods against each other, aggregated across all horizons h. The methods are ordered according to their performance from left to right (the
leftmost the best), while the black bar connects methods that are not significantly different (at p � 0.05).

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026715

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

7 CONCLUSIONS AND FUTURE WORK

Multivariate time series forecasting is a major challenge due to the
large dimensionality of the available data. In recent years, there has
been a remarkable development ofmultivariate techniques, especially
deep learning based ones. The majority of these techniques rely on
models of considerable complexity, requiring longer computation
times, and often lacking interpretability of the fitted model.

This paper proposes an effective and reliable forecasting
methodology based on a combination of model-driven
(statistical) and (data machine learning) techniques. The obtained
results are promising in terms of scalability and effectiveness. This
study supports the idea that factor-based models can be a promising
alternative to representation learning strategies, and that the
combination of statistical and machine learning techniques (often
considered in opposition rather than in synergy) could improve the
forecasting performances. Additionally, simpler forecasting methods
(e.g., univariate) often neglected, can still provide competitive results
(Paldino et al., 2021), even in the case of high dimensional (n > 100)
multivariate forecasting.

Further studies will focus on an online implementation of the
factor-based framework, where both the factor estimation and the
factor forecasting component could be incrementally updated as new
data samples will be made available, as well as a more scalable
implementation of the framework, in order to be able to tackle
multivariate series with larger dimensionality. Further attention
should be drawn also to the automatic selection of the most
relevant parameters characterizing the framework (namely the
number of factors for factor estimation and model order for
factor forecasting), e.g. extending the preliminary work in De
Stefani et al. (2018); Bontempi et al. (2017).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. The
Electricity and Traffic datasets can be found on the Github
page associated to the article (Lai et al., 2018) available at
https://github.com/laiguokun/multivariate-time-series-data. The
Mobility data analyzed for the study can be found on the
corresponding Kaggle page (https://www.kaggle.com/giobbu/
belgium-obu) and in (De Stefani and Bontempi, 2021). The
original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

GB was supported by Service Public deWallonie Recherche under
Grant No. 2010235-ARIAC by DIGITALWALLONIA4.AI.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/
full#supplementary-material

FIGURE 7 | Traffic—Boxplots representing the distribution of the computational time (in s) across the different rolling window for the longest horizon (H � 24). Each
column in the grid represents a different factor estimation technique.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026716

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://github.com/laiguokun/multivariate-time-series-data
https://www.kaggle.com/giobbu/belgium-obu
https://www.kaggle.com/giobbu/belgium-obu
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fdata.2021.690267/full#supplementary-material
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

REFERENCES

Agarwal, K., Dheekollu, L., Dhama, G., Arora, A., Asthana, S., and Bhowmik, T.
(2020). “Deep Learning Based Time Series Forecasting,” in 2020 19th IEEE
International Conference on Machine Learning and Applications (ICMLA)
(IEEE), 859–864. doi:10.1109/icmla51294.2020.00140

Aha, D. W. (1997). Special Issue on Lazy Learning. Artif. Intelligence Rev. 11, 7–10.
doi:10.1023/a:1006538427943

Assimakopoulos, V., and Nikolopoulos, K. (2000). The Theta Model: a Decomposition
Approach toForecasting. Int. J. Forecast. 16, 521–530. doi:10.1016/s0169-2070(00)00066-2

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N., and Petropoulos, F. (2017).
Forecasting with Temporal Hierarchies. Eur. J. Oper. Res. 262, 60–74.
doi:10.1016/j.ejor.2017.02.046

Ben Taieb, S., Bontempi, G., Atiya, A. F., and Sorjamaa, A. (2012). A Review and
Comparison of Strategies for Multi-step Ahead Time Series Forecasting Based
on the NN5 Forecasting Competition. Expert Syst. Appl. 39, 7067–7083.
doi:10.1016/j.eswa.2012.01.039

Ben Taieb, S., Bontempi, G., Sorjamaa, A., and Lendasse, A. (2009). “Long-
term Prediction of Time Series by Combining Direct and Mimo Strategies,”
in Proceedings of the 2009 IEEE International Joint Conference on
Neural Networks (Atlanta, U.S.A.: IEEE), 3054–3061. doi:10.1109/
ijcnn.2009.5178802

Ben Taieb, S., Sorjamaa, A., and Bontempi, G. (2010). Multiple-output Modeling
forMulti-Step-Ahead Time Series Forecasting.Neurocomputing 73, 1950–1957.
doi:10.1016/j.neucom.2009.11.030

Bengio, Y. (2009). Learning Deep Architectures for AI. FNT Machine Learn. 2,
1–127. doi:10.1561/2200000006

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A., and Jenssen, R. (2017).
An Overview and Comparative Analysis of Recurrent Neural Networks for Short
Term Load Forecasting. arXiv:1705.04378 [cs]. doi:10.1007/978-3-319-70338-1

Birattari, M., Bontempi, G., and Bersini, H. (1999). Lazy Learning Meets the
Recursive Least Squares Algorithm. Adv. Neural Inf. Process. Syst. 1999,
375–381.

Bontempi, G., and Ben Taieb, S. (2011). Conditionally Dependent Strategies for
Multiple-Step-Ahead Prediction in Local Learning. Int. J. Forecast. 27, 689–699.
doi:10.1016/j.ijforecast.2010.09.004

Bontempi, G., Ben Taieb, S., and Le Borgne, Y.-A. (2013). Machine Learning
Strategies for Time Series Forecasting. Berlin, Heidelberg: Springer Berlin
Heidelberg, 62–77. doi:10.1007/978-3-642-36318-4_3

Bontempi, G., Birattari, M., and Bersini, H. (1999). “Local Learning for Iterated
Time-Series Prediction,” in Machine Learning: Proceedings of the Sixteenth
International Conference. Editors I. Bratko and S. Dzeroski (San Francisco, CA:
Morgan Kaufmann Publishers), 32–38.

Bontempi, G., Le Borgne, Y.-A., and de Stefani, J. (2017). “A Dynamic Factor
Machine Learning Method for Multi-Variate and Multi-Step-Ahead
Forecasting,” in 2017 IEEE International Conference on Data Science
and Advanced Analytics (DSAA) (IEEE), 222–231. doi:10.1109/
DSAA.2017.1

Bontempi, G. (2008). “Long Term Time Series Prediction with Multi-Input Multi-
Output Local Learning,” in Proceedings of the 2nd European Symposium on
Time Series Prediction (TSP) (ESTSP08), 145–154.

Bourlard, H., and Kamp, Y. (1988). Auto-association by Multilayer Perceptrons
and Singular Value Decomposition. Biol. Cybern. 59, 291–294. doi:10.1007/
bf00332918

Bruxelles Mobilité and Machine Learning Group - ULB (2021). Mobility Dataset.
California Departement of Transport (2021). Traffic Dataset.
Cavalcante, L., Bessa, R. J., Reis, M., and Browell, J. (2017). Lasso Vector

Autoregression Structures for Very Short-Term Wind Power Forecasting.
Wind Energy 20, 657–675. doi:10.1002/we.2029

Center, M. O. F. (2020). M4-methods.
Cheng, H., Tan, P.-N., Gao, J., and Scripps, J. (2006). “Multistep-ahead Time Series

Prediction,” in PAKDD, 765–774. doi:10.1007/11731139_89
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., et al. (2014). Learning Phrase Representations Using Rnn Encoder-Decoder
for Statistical Machine Translation. arXiv preprint arXiv:1406.1078.

De Stefani, J., and Bontempi, G. (2021). E-DFML-Experiment. GitHub Repository.
GitHub. Available at: https://github.com/jdestefani/E-DFML-Experiments.

De Stefani, J., Le Borgne, Y.-A., Caelen, O., Hattab, D., and Bontempi, G. (2018).
Batch and Incremental Dynamic Factor Machine Learning for Multivariate and
Multi-Step-Ahead Forecasting. Int. J. Data Sci. Anal. 7, 311–329. doi:10.1007/
s41060-018-0150-x

DeMers, D., and Cottrell, G.W. (1993). “Non-linear Dimensionality Reduction,” in
Advances in Neural Information Processing Systems (Citeseer), 580–587.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets.
J. Machine Learn. Res. 7, 1–30.

Du, S., Li, T., Yang, Y., and Horng, S.-J. (2020). Multivariate Time Series
Forecasting via Attention-Based Encoder-Decoder Framework.
Neurocomputing 388, 269–279. doi:10.1016/j.neucom.2019.12.118

Exterkate, P., Groenen, P. J. F., Heij, C., and van Dijk, D. (2016). Nonlinear
Forecasting with many Predictors Using Kernel ridge Regression. Int.
J. Forecast. 32, 736–753. doi:10.1016/j.ijforecast.2015.11.017

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The Generalized Dynamic
FactorModel. J. Am. Stat. Assoc. 100, 830–840. doi:10.1198/016214504000002050

Gardner, E. S., Jr (1985). Exponential Smoothing: The State of the Art. J. Forecast. 4,
1–28. doi:10.1002/for.3980040103

Gardner, E. S., Jr (2006). Exponential Smoothing: The State of the Art-Part II. Int.
J. Forecast. 22, 637–666. doi:10.1016/j.ijforecast.2006.03.005

Gilbert, P. (1993). State Space and ARMAModels: An Overview of the Equivalence.
Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks.

Springer.
Guo, M., Bai, Z., and An, H. (1999). Multi-step Prediction for Nonlinear

Autoregressive Models Based on Empirical Distributions. Stat. Sinica 1,
559–570.

Hewamalage, H., Bergmeir, C., and Bandara, K. (2021). Recurrent Neural
Networks for Time Series Forecasting: Current Status and Future
Directions. Int. J. Forecast. 37, 388–427. doi:10.1016/j.ijforecast.2020.06.008

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

Holt, C. C. (2004). Forecasting Seasonals and Trends by Exponentially
Weighted Moving Averages. Int. J. Forecast. 20, 5–10. doi:10.1016/
j.ijforecast.2003.09.015

Hotelling, H. (1933). Analysis of a Complex of Statistical Variables into Principal
Components. J. Educ. Psychol. 24, 417–441. doi:10.1037/h0071325

Hwang, Y., Tong, A., and Choi, J. (2016). “Automatic Construction of
Nonparametric Relational Regression Models for Multiple Time Series,” in
International Conference on Machine Learning (PMLR), 3030–3039.

Hyndman, R. J. (2020). A Brief History of Forecasting Competitions. Int.
J. Forecast. 36, 7–14. doi:10.1016/j.ijforecast.2019.03.015

Hyndman, R. J., and Athanasopoulos, G. (2018). Forecasting: Principles and
Practice. OTexts.

Hyndman, R. J., and Billah, B. (2003). Unmasking the Theta Method. Int.
J. Forecast. 19, 287–290. doi:10.1016/s0169-2070(01)00143-1

Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-
Schneider, M., et al. (2020). Criteria for Classifying Forecasting Methods.
Int. J. Forecast. 36, 167–177. doi:10.1016/j.ijforecast.2019.05.008

Jolliffe, I. (2002). Principal Component Analysis. Springer.
Ke, G.,Meng, Q., Finley, T.,Wang, T., Chen,W., Ma,W., et al. (2017). Lightgbm: AHighly

Efficient Gradient BoostingDecision Tree.Adv. Neural Inf. Process. Syst. 30, 3146–3154.
Kim, M., Wang, Y., Sahu, P., and Pavlovic, V. (2019). “Bayes-Factor-VAE:

Hierarchical Bayesian Deep Auto-Encoder Models for Factor
Disentanglement,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (IEEE), 2979–2987. doi:10.1109/iccv.2019.00307

Kline, D. M. (2004). Methods for Multi-step Time Series Forecasting Neural
Networks. IGI Global.

Kuznetsov, V., and Mariet, Z. (2018). Foundations of Sequence-To-Sequence
Modeling for Time Series. arXiv preprint arXiv:1805.03714.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). “Modeling Long-And Short-
Term Temporal Patterns with Deep Neural Networks,” in The 41st
International ACM SIGIR Conference on Research & Development in
Information Retrieval (ACM), 95–104. doi:10.1145/3209978.3210006

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer
Science & Business Media.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020a). TheM4 Competition:
100,000 Time Series and 61 Forecasting Methods. Int. J. Forecast. 36, 54–74.
doi:10.1016/j.ijforecast.2019.04.014

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026717

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://doi.org/10.1109/icmla51294.2020.00140
https://doi.org/10.1023/a:1006538427943
https://doi.org/10.1016/s0169-2070(00)00066-2
https://doi.org/10.1016/j.ejor.2017.02.046
https://doi.org/10.1016/j.eswa.2012.01.039
https://doi.org/10.1109/ijcnn.2009.5178802
https://doi.org/10.1109/ijcnn.2009.5178802
https://doi.org/10.1016/j.neucom.2009.11.030
https://doi.org/10.1561/2200000006
https://doi.org/10.1007/978-3-319-70338-1
https://doi.org/10.1016/j.ijforecast.2010.09.004
https://doi.org/10.1007/978-3-642-36318-4_3
https://doi.org/10.1109/DSAA.2017.1
https://doi.org/10.1109/DSAA.2017.1
https://doi.org/10.1007/bf00332918
https://doi.org/10.1007/bf00332918
https://doi.org/10.1002/we.2029
https://doi.org/10.1007/11731139_89
https://github.com/jdestefani/E-DFML-Experiments
https://doi.org/10.1007/s41060-018-0150-x
https://doi.org/10.1007/s41060-018-0150-x
https://doi.org/10.1016/j.neucom.2019.12.118
https://doi.org/10.1016/j.ijforecast.2015.11.017
https://doi.org/10.1198/016214504000002050
https://doi.org/10.1002/for.3980040103
https://doi.org/10.1016/j.ijforecast.2006.03.005
https://doi.org/10.1016/j.ijforecast.2020.06.008
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/10.1037/h0071325
https://doi.org/10.1016/j.ijforecast.2019.03.015
https://doi.org/10.1016/s0169-2070(01)00143-1
https://doi.org/10.1016/j.ijforecast.2019.05.008
https://doi.org/10.1109/iccv.2019.00307
https://doi.org/10.1145/3209978.3210006
https://doi.org/10.1016/j.ijforecast.2019.04.014
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020b). The M5 Accuracy
Competition: Results, Findings and Conclusions. Int J Forecast.

Matías, J. M. (2005). “Multi-output Nonparametric Regression,” in EPIA, 288–292.
doi:10.1007/11595014_29

McNames, J. (1998). “A Nearest Trajectory Strategy for Time Series Prediction,” in
Proceedings of the International Workshop on Advanced Black-Box
Techniques for Nonlinear Modeling (Belgium: K.U. Leuven), 112–128.

Micchelli, C. A., and Pontil, M. (2005). On Learning Vector-Valued Functions.
Neural Comput. 17, 177–204. doi:10.1162/0899766052530802

Nakagawa, K., Ito, T., Abe, M., and Izumi, K. (2019). Deep Recurrent Factor Model:
Interpretable Non-linear and Time-Varying Multi-Factor Model. arXiv preprint
arXiv:1901.11493.

NREL (2021). Electricity Dataset.
Paldino, G. M., De Stefani, J., De Caro, F., and Bontempi, G. (2021). Does Automl

Outperform Naive Forecasting? Eng. Proc. 5. doi:10.3390/engproc2021005036
Papadimitriou, S., Sun, J., and Faloutsos, C. (2005). “Streaming Pattern Discovery

in Multiple Time-Series,” in Proceedings of the 31st International Conference
on Very Large Data Bases, 697–708.

Saad, E. W., Prokhorov, D. V., and Wunsch, D. C. (1998). Comparative Study of
Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural
Networks. IEEE Trans. Neural Netw. 9, 1456–1470. doi:10.1109/72.728395

Schapire, R. E. (1990). The Strength ofWeak Learnability.Mach Learn. 5, 197–227.
doi:10.1007/bf00116037

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear Component Analysis
as a Kernel Eigenvalue Problem. Neural Comput. 10, 1299–1319. doi:10.1162/
089976698300017467

Sen, R., Yu, H.-F., and Dhillon, I. (2019). Think Globally, Act Locally: A Deep
Neural Network Approach to High-Dimensional Time Series Forecasting. arXiv
preprint arXiv:1905.03806, 5.

Smyl, S. (2020). A Hybrid Method of Exponential Smoothing and Recurrent
Neural Networks for Time Series Forecasting. Int. J. Forecast. 36, 75–85.
doi:10.1016/j.ijforecast.2019.03.017

Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., and Lendasse, A. (2007). Methodology for
Long-Term Prediction of Time Series. Neurocomputing 70, 2861–2869.
doi:10.1016/j.neucom.2006.06.015

Stock, J. H., and Watson, M. W. (2002). Forecasting Using Principal Components
from a Large Number of Predictors. J. Am. Stat. Assoc. 97, 1167–1179.
doi:10.1198/016214502388618960

Stock, J., and Watson, M. (2010). “Dynamic Factor Models,” in Oxford Handbook of
Economic Forecasting. Editors M. Clements and D. Hendry (Oxford University Press).

Susik, R. (2020). Recurrent Auto encoder with Sequence-Aware Encoding. arXiv
preprint arXiv:2009.07349.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with
Neural Networks. arXiv preprint arXiv:1409.3215.

Taieb, S. B. (2014). Machine Learning Strategies for Multi-Step-Ahead Time Series
Forecasting. Belgium: Universit Libre de Bruxelles, 75–86.

Taieb, S. B., Taylor, J. W., and Hyndman, R. J. (2017). “Coherent Probabilistic
Forecasts for Hierarchical Time Series,” in International Conference on
Machine Learning (PMLR), 3348–3357.

Talavera-Llames, R., Pérez-Chacón, R., Troncoso, A., and Martínez-Álvarez, F.
(2019). Mv-kwnn: A Novel Multivariate and Multi-Output Weighted Nearest
Neighbours Algorithm for Big Data Time Series Forecasting. Neurocomputing
353, 56–73. doi:10.1016/j.neucom.2018.07.092

Tashman, L. J. (2000). Out-of-sample Tests of Forecasting Accuracy: an Analysis
and Review. Int. J. Forecast. 16, 437–450. doi:10.1016/s0169-2070(00)00065-0

Tong, H. (1983). Threshold Models in Nonlinear Time Series Analysis. Berlin:
Springer-Verlag.

Tsay, R. S. (2014). Multivariate Time Series Analysis with R and Financial
Applications. Wiley.

Van Der Maaten, L., Postma, E., and Van den Herik, J. (2009). Dimensionality
Reduction: a Comparative. J. Mach Learn. Res. 10, 13.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010).
Stacked Denoising Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion. J. Machine Learn. Res. 11,
3371–3408.

Wang, G., Choi, K.-S., Teoh, J. Y.-C., and Lu, J. (2020). Deep Cross-Output
Knowledge Transfer Using Stacked-Structure Least-Squares Support Vector
Machines. IEEE transactions on cybernetics.

Weigend, A., and Gershenfeld, N. (1994). Time Series Prediction: Forecasting the
Future and Understanding the Past. Harlow, UK: Addison-Wesley.

Wickramasuriya, S. L., Athanasopoulos, G., and Hyndman, R. J. (2015). Forecasting
Hierarchical and Grouped Time Series through TraceMinimization. Clayton, VIC:
Department of Econometrics and Business Statistics, Monash University, 105.

Yang, Y., Sautiere, G., Ryu, J. J., and Cohen, T. S. (2020). “Feedback Recurrent
Autoencoder,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (IEEE), 3347–3351.
doi:10.1109/icassp40776.2020.9054074

Zhao, Y., Ye, L., Pinson, P., Tang, Y., and Lu, P. (2018). Correlation-constrained
and Sparsity-Controlled Vector Autoregressive Model for Spatio-Temporal
Wind Power Forecasting. IEEE Trans. Power Syst. 33, 5029–5040. doi:10.1109/
tpwrs.2018.2794450

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 De Stefani and Bontempi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org September 2021 | Volume 4 | Article 69026718

De Stefani and Bontempi Factor-Based Framework for Multi(variate/step-ahead) Forecasting

https://doi.org/10.1007/11595014_29
https://doi.org/10.1162/0899766052530802
https://doi.org/10.3390/engproc2021005036
https://doi.org/10.1109/72.728395
https://doi.org/10.1007/bf00116037
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/10.1016/j.neucom.2006.06.015
https://doi.org/10.1198/016214502388618960
https://doi.org/10.1016/j.neucom.2018.07.092
https://doi.org/10.1016/s0169-2070(00)00065-0
https://doi.org/10.1109/icassp40776.2020.9054074
https://doi.org/10.1109/tpwrs.2018.2794450
https://doi.org/10.1109/tpwrs.2018.2794450
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series
	1 Introduction
	2 Materials and Methods
	2.1 Mathematical Notation
	2.2 Time Series Forecasting
	2.2.1 Multi-step-ahead Univariate Forecasting
	2.2.2 Multivariate Forecasting

	2.3 Dynamic Factor Models

	3 The Dynamic Factor Machine Learner Framework
	3.1 Factor Estimation
	3.1.1 PCA
	3.1.2 Feed-Forward Autoencoders
	3.1.3 Recurrent Autoencoders

	3.2 Factor Forecasting
	3.2.1 Statistical Techniques
	3.2.1.1 Exponential Smoothing (ES)
	3.2.1.2 Theta
	3.2.1.3 Combined
	3.2.1.4 Vector Autoregressive

	3.3 Machine Learning Based Techniques
	3.3.1 Lazy Learning
	3.3.2 Gradient Boosting

	4 Experimental Setup
	4.1 Benchmarks
	4.2 Dynamic Factor Machine Learner Framework
	4.3 Datasets
	4.4 Results Presentation

	5 Results
	5.1 Mobility
	5.2 Electricity
	5.3 Traffic
	5.4 Computational Time

	6 Discussion
	7 Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

