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DAFT-E: Feature-based Multivariate and Multi-step-ahead Wind
Power Forecasting

Fabrizio De Caro *†, Member, IEEE, Jacopo De Stefani *‡,
Alfredo Vaccaro †, Senior Member, IEEE, and Gianluca Bontempi ‡

Abstract—Wind energy is one of the most promising resources
for the mitigation of greenhouse gas emissions that contribute to
anthropogenic global warming. However, the large proliferation
of wind power generators is causing several critical issues in
power systems due to their variable power generated profiles.
For this reason, a large number of learning techniques, e.g.
integrating Vector Auto-Regressive and Neural Network-based
models, were proposed in the literature for mitigating wind
power uncertainty issues. Unfortunately, these methodologies
show several limitations, e.g. the huge number of parameters
and/or the heavy computational cost, which hinder their deploy-
ment in modern power system operation, where prompt and
reliable wide-area wind power generation forecasts are requested
for supporting time-critical decision making on several time
horizons. To try addressing this issue, this paper proposes the
Dynamic Adaptive Feature-based Temporal Ensemble (DAFT-
E) forecasting approach, which relies on an extensive feature
engineering, a fast feature selection step and an ensemble of
computationally inexpensive models to reduce the computational
complexity of the forecasting task, while still preserving predictive
accuracy. The experimental results, which benchmark DAFT-E
against multivariate (VAR and deep learning) alternatives on two
real case studies, show that the proposed approach outperforms
state-of-the-art and representation learning models according to
several forecasting accuracy metrics.

Index Terms—Wind Power Forecasting, Power System Opera-
tions, Machine Learning, Spatio Temporal Features, Forecasting
Model Validation, Ensemble Forecasting.

I. INTRODUCTION

W IND power generation is one of the most promising
energy sources to reduce the impact of power systems

on global warming. Recently, the wind power technological
competitiveness and the incentive policies implemented by
authorities allowed a proliferation of Wind Power Generators
(WPG) in power systems [1].

Unfortunately, WPGs introduce uncertainty in power sys-
tems due to their variable behavior. The uncertainty compo-
nents are linked to wind behavior and to wind energy gener-
ation [2]. First, although wind dynamics are well understood,
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modeled, and predicted, the wind magnitude and direction
exhibit random fluctuations according to the considered time
scale [3]. Second, operative conditions, mechanical aging,
aerodynamic interference among wind power generators, and
rotor inertia affect the power generation output given a set
of weather predictions [4]. These uncertainty sources push
the system operators to revise their traditional planning and
operation tools to mitigate the impacts induced by a massive
grid integration of WPGs. In this scenario, accurate wind
power forecasting represents an effective tool for managing the
generated power fluctuations, improve resources provisioning
and ensure safe system operations [5]. Indeed, the trans-
mission system operator (TSO) needs spatial and temporal
forecasting of load and renewable energy sources (RES) over
a time window ranging from 1-week to 5-min. In short-
term system operation (pre-dispatch phase), which extends
from 1-week to a day ahead of actual operation, TSO needs
predictions to identify and allocate the system reserve. In
real-time operation, which extends from 5-min to 30-min
ahead of actual operation, TSO needs predictions to bear
RES/load increments/decrements following deviations from
the predicted profiles; to evaluate the power system status;
to take preventive actions for assuring a secure and reliable
grid operation [6].

Since these decision processes concern events typically
occurring over a horizon ranging from 5 minutes to 6 hours,
accurate short-term wind power forecasting on large areas is
strategic for anticipating critical events [7].

The literature proposed several forecasting methodologies,
where the dynamic model adaptation represents one of the
most important issues to address in order to model the intrinsic
time-varying behaviour characterizing the wind dynamics [5].

Wide area forecasting is often approached as a multivariate
forecasting problem, where each wind farm generation profile
represents a variable. The most adopted approaches are statis-
tical and Machine Learning (ML) based. Statistical approaches
include vector regressions (VAR, VARMA, VARIMA, VAR-
MAX) [8], as well as kernel-based regression [9]. In machine
learning we can distinguish between feature-engineering tech-
niques, requiring expert know-how to encode useful informa-
tion into input features, and representation-based techniques,
where the model is expected to discover the optimal data
representation during the learning process [10].

Vector AutoRegressive (VAR) models showed a good
capability in capturing linear dependencies between wind
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farms [11]. Since canonical VAR models consider stationary
power dynamics, [12] proposed an adaptive lasso VAR based
model with Forgetting Factors to improve the prediction accu-
racy. The authors of [13] proposed a correlation constrained
and sparsity controlled VAR to reduce the effective number of
parameters in model training. Indeed, the main VAR-based
model drawback is the dramatic parameter growth at the
increasing of the time series and lag sample number according
to (N+L ·N2), where N and L are the number of time series
and lags, respectively.

In the machine learning community, representation based
Deep-Learning (DL) is more and more used in wind and power
forecasting [14] because of its success with non-linear spatial
relationships [15]. In particular, Recurrent and Convolutional
Neural Networks are the most promising models for predicting
wind power time series [16]. Unfortunately, their lack of
robustness in highly dynamic settings, as well as the need
for specialized architecture for efficient computational perfor-
mance and extensive fine-tuning [17], makes them unsuitable
for time-critical applications, notably short-term forecasting of
many wind farms for system monitoring purposes. Moreover,
the lack of interpretability of the model and the automatically
determined features hinder the extraction of useful information
for forward planning applications.

At the same time, the recent advances in feature selection
(also for very large dimension settings) suggest that a feature
engineering strategy should be considered as an interesting
alternative to black box solutions, mainly if interpretability,
robustness and computational time are at stake.

To the best of our knowledge, this paper is the first sys-
tematic comparison of feature engineering and representation
learning strategies for multivariate wind power forecasting.

In particular, the main contributions of this manuscript are:
1) The design of a novel ensemble forecasting methodology

based on model aggregation and feature engineering,
adaptive error-based combination weights and Forgetting
Factors (FFs);

2) The introduction of novel features able to detect specific
operating conditions as wind power generation curtail-
ment or null production, which can deteriorate the model
training in a simulated real condition environment;

3) A model assessment procedure based on the bias-
variance principle, which highlights the multivariate
model performance over the space through a bivariate
box plot visualization [18];

4) The comparison between different families of multivari-
ate forecasting strategies over different horizons, time
resolutions and taking into account, besides accuracy,
financial risk measures as Value at Risk (VaR) and
conditional Value at Risk (cVaR).

II. MULTIVARIATE FORECASTING PIPELINE

The modeling of a N -variate time series, where yn,t is
the generic exchanged power generation profiles at MV/HV
substations, requires a number of steps to obtain a reliable
multi-step-ahead forecasting. Given a time resolution ∆t =
ti − ti−1, a time instant t, and a forecasting horizon span

H = {1, . . . , h, . . . ,H}, where h and H are the generic
and maximum forecasting horizon, a multi-variate and multi-
temporal model f aims to estimate the expected future values
conditional on the past behavior:

y1,t+1, . . . , y1,t+H
. . .
yN,t+1, . . . , yN,t+H

= f

( y1,t−d−L, . . . , y1,t−d
. . .

yN,t−d−L, . . . , yN,t−d

)
(1)

where L, d, and N are the lag, delay, and the time series
number, respectively. The multi-input multi-output (MIMO)
nature of the mapping (1) can be addressed in several manners
according to the assumptions made about the nature of the
temporal and cross-series dependencies.

In the global approach, a single multi-input multi-output
model is learned from the observed data. In the local approach,
the forecasting problem is decomposed in several sub-tasks,
which are addressed independently [19]. Note that the decom-
position may occur at several levels: for instance we could
decompose the MIMO mapping in N multi-input single-output
(MISO) tasks or in N single-input single-output (SISO) tasks.

The nature of the multivariate problem implies that the
best way to introduce a forecasting method is to present it
as a computational pipeline addressing the design issues in a
sequence of steps:

1) Pre-Processing: this step typically normalizes the ob-
servations and rescales them to a suitable temporal
resolution according the considered context. Missing
data may be replaced by applying spatial averaging
techniques [20].

2) Feature Engineering: this step augments the represen-
tation space by constructing a number of additional
input features capturing either the temporal dynamic
of the signal or the occurrence of specific events (e.g.
curtailment).

3) Embedding strategy: a forecasting problem may be set
as a supervised input-output problem where the nature of
the output and the dimension of the input space depend
on the horizon H , temporal lag L and the cross-series
dependencies taken into account [21].

4) Dimensionality reduction: this step aims to reduce the
the number of features, by compression (via Principal
Components Analysis - PCA) or by feature selection.
This process reduces the risk of curse of dimensional-
ity [22] and the computational burden in model train-
ing [23], by removing features that are redundant with
respect to the other input variables or low correlated to
the predicted variable.

5) Model estimation: this step estimates from the available
data the input-output relationship defined in the previ-
ous steps. State-of-the-art approaches are discussed in
Section IV-C.

6) Performance Assessment: this step typically splits the
observed data into two parts: one for learning the input-
output mapping (training set) and the other one to
validate the model performance (validation set). The
distribution of performance measures on the validation
set is then analyzed in order to assess the correctness and
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robustness of the forecasts both in typical and worst-case
situations.

III. PROPOSED METHODOLOGY

This section introduces the proposed multi-input single-
output (MISO) methodology by detailing the most peculiar
steps of its computational pipeline.

1) Feature Engineering: first, this step augments the input
space by computing a number of conventional statistics across
a time window of the past w values:

Moving Average ȳt =
1

w + 1

w∑
q=0

yt−q (2)

Maximum Value y+t = max
q∈{0,··· ,w}

yt−q (3)

Minimum Value y−t = min
q∈{0,··· ,w}

yt−q (4)

p-quantile
yp,t = inf{z : F̂w(z) ≥ p}
z ∈ {yt−0, · · · , yt−q}

F̂w(z) =
1
w

∑w
q=0 1yt−q≤z

(5)

1st order difference
∆yt = yt − yt−1

yt ∈ {yt−0, · · · , yt−q}
(6)

Second, it introduces parametric, expert-based features to
detect the curtailment of wind power series, which causes the
deflection of the trajectories from a certain dynamical trend
to a constant one. These features are constructed, respectively,
using first order difference based method, discarding all signal
variability smaller than σ (7), and a Run Length Encoding
(RLE) based detection, employing the auxiliary indicator func-
tion 1S(·) (8), discarding all the sequences of constant values
shorter than a given parameter v (9). Both the parameters σ
and v are externally specified.

1FODσ (yt) =

{
1 |∆yt| < σ

0 otherwise
(7)

1S(yt) =

{
1 ∆yt = 0

0 otherwise
(8)

1RLEv (yt) =


1 ∃ts > t0, ts < te < t s.t.

te − ts > v ∧ ∀i ∈ {ts · · · , te}1S(yi) = 1

0 otherwise
(9)

These derived features augment the cardinality of Y[S×N ],
where S is the available number of samples and N is the
number of input time series. After that, the augmented number
of time series is N ′ = N · (1 + ns · sq + nf ), where ns is
the number of statistics (2)-(5) computed for sq different lags,
and nf is the number of features (6)-(9).

2) Data Embedding: The data embedding process rear-
ranges Y in the matrices of targets R and predictors P,
as described in [24], given the parameters L, d, and H . In
particular, the obtained matrices are P[S′×N ′] and R[S′×F ],
where S′ = S − (L + d + H + 1) and F = N · H . Hence,
the latter matrices are split into training and test matrices
producing Rtrn[Strn×F ], Rtest[Stest×F ], Ptrn[Strn×N ′],
and Ptest[Stest ×N ′], where Stest = S′ − Strn.

3) Feature selection: The large dimensional space, due to
the combined effect of smoothing and embedding processes,
may be addressed by filter selection techniques like the
minimum Redundancy Maximum Relevance (mRMR) [25].
mRMR returns a subset of NS << N ′ relevant features by us-
ing a forward procedure which at the g-th step (g = 1, . . . , NS)
selects the least redundant and most informative predictor
variable:

argmax
Pλ∈P−Φg−1

[
I(Pλ; r)−

1

g − 1

∑
Pψ∈Φg−1

I(Pψ;Pλ)

]
(10)

where Φg−1 is the set of g − 1 previously selected variables
and I(x, y) denotes the mutual information [26]. Note that
the mutual information term can be efficiently estimated by
I(x, y) = 1/2 ln(1−ρ(x, y)2) where ρ is the Pearson correla-
tion coefficient under an assumption of normality. A specific
advantage of mRMR with respect to compression techniques
is that it does not transform the original features, allowing an
easier data interpretation.

4) Dynamic Adaptive Feature-based Temporal Ensemble:
We propose an original method, called Dynamic Adaptive
Feature-based Temporal Ensemble (DAFT-E), based on the
weighted average of M forecasting models, whose weights
evolution depends on their forecasting errors over a sliding
window of size Γ and a forgetting strategy. The pseudo-code
of the method is detailed in the Algorithm 1.

The multivariate multi-step-ahead problem is decomposed
in a set of F = N · H multi-input single-output tasks by
applying a direct strategy [21] for each n-th column of R. Each
prediction task fn,h (line 6) is addressed by M algorithms and
the M predictions are combined by weighted averaging (line
18).

Every Γ steps, the weights are returned by the inverse of
the mean of the latest Γ squared forecasting errors (line 10),
then normalized (line 15) and eventually regularized (line 16).

The regularization uses a vector of V forgetting factors
(FFs) Λ1, . . . ,ΛV satisfying 0 < Λv < 1,

∑V
v=1 Λv = 1,

which quantifies the contribution of the V previous cycles.
DAFT-E controls the bias/variance trade-off of the adaptive

algorithm thanks to the hyperparameters Γ and Λv, v =
1, . . . , V . The larger Γ and the more similar the Λv values,
the higher the smoothness (and consequently the bias) of
the forecast estimation. Such dynamic regularization process
allows better robustness (and then accuracy) in front of cyclic
regime changes (ramps, power generation curtailments). Given
the high degree of uncertainty of the wind process, the
memory-based weights update process reduces the sensitivity
to recent noise values and decreases variance and instability. In
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Algorithm 1 DAFT-E algorithm for the k-th trial having V
weight update cycles with FF vector Λ and window size Γ

Input: M Algorithms, P(k)
trn,R

(k)
trn,P

(k)
test,Λ,Γ

Output: X̂ (DAFT-E prediction)

1: Nc ← ⌊Ntest/Γ⌋
▷ Update the weights over the time span Γ

2: for c← V to Nc do
▷ when V < c the wnorm are initialized

3: tstart ← Γ · (c− 1) + 1
4: tend ← min (Ntest,Γ · c)

▷ Compute the error for each of the M algorithms
5: for i← 1 to M do
6: R̂

(c,i)
test ← m(k,i)(P

(k)
trn,R

(k)
trn,P

(k)
test[tstart : tend, ])

▷ m(k, i) produces the outputs of the ith algorithm,
trained with input P

(k)
trn and output R

(k)
trn on the testing

set P(k)
test

7: E(c,i) ← R̂
(c,i)
test −R

(k)
test[tstart : tend, ]

8: E(c,i) ← ⟨E(c,i),E(c,i)⟩
▷ Update the weights for each of the F = N ∗H maps

9: for j ← 1 to F do
10: w(c,i)[j]← 1/mean(E(c,i), j)

▷ mean(E, j) computes the mean of the jth column of
the E matrix

11: end for
12: end for

▷ Dynamic Adaptive Algorithm Combination
13: for j ← 1 to F do
14: for i← 1 to M do

▷ Normalize weights for the jth variable
15: w

(c,i)
norm[j]← w(c,i)[j]/

∑M
i w(c,i)[j]

▷ Combine normalized weights using FF vector Λ

16: w
(c,i)
norm[j]←

∑V
v=1 Λ[v]w

(c−v,i)
norm [j]

17: end for
18: X̂[tstart : tend, j]←

∑M
i=1 w

(c−1,i)
norm [j]R̂

(c,i)
test [ , j]

19: end for

▷ Sliding window approach to keep last V weight matrices
w and discard the oldest one

20: for i← 1 to M do
21: for v ← 1 to V do
22: w

(c−v,i)
norm ← w

(c−v+1,i)
norm

23: end for
24: end for
25: end for

practice, Γ and Λv values are set by considering a grid search
procedure over a training portion of the historical series.

IV. EXPERIMENTAL ASSESSMENT

A. Experimental Configuration

We consider two real wind power forecasting case stud-
ies: one based on a public dataset and the other based on
a proprietary dataset. The first dataset includes 22 eastern
Australian wind farm power generation time series with 5

minutes time resolution for 1 year, which is scaled to 15
minutes, the data are available with the R package of [12].
The latter is a private domain dataset that contains 28 southern
Italian wind farms with a 15 minutes time resolution for 1
year. For the sake of conciseness, the tests are conducted by
considering a forecasting horizon span ranging from 1 to 3
hours (H = {1, . . . , 12} time step ahead).

A standard procedure for the assessment of the forecasting
model performance considers splitting the initial dataset into
training and validation sets. Thus, a forecasting model uses
the training set to learn, and the validation set to assess its
accuracy using unknown data. Unfortunately, this approach
shows several shortcomings [27]. Particularly, it neglects the
impact of outliers on the models and limits the generalization
capability of the model over the time.

Differently, the rolling window procedure splits the original
dataset into K parts (trials). Thus, each part is further split in
training and validation sets. Successively, a statistical analysis
is performed on the collected accuracy metrics to analyze the
behavior of the model across time. Particularly, the number
of samples is 300 (10 days) and 100 (4 days) for each k-
th training and validation sets, respectively. Both datasets are
split in K = 45 trials.

The DAFT-E model includes Random Forest (RF) [28],
Lazy Learning (Lazy) [29], and Persistence (Naive it). These
models are selected after a preliminary analysis due to both
their low computational burden and the good generalization
performance, which were shown in different real-world time
series forecasting problems [30]. Furthermore, the ML mod-
els are trained with different feature sets for enhancing the
generalization capability of the ensemble model. The first set
considers “raw” features, whereas the latter consider “raw and
derived” ones.

We expect that this increases the model generalization ca-
pability, since the final forecasting is obtained by MSE-based
weighted average considering the dynamic model performance
over the time. Particularly, the weights are updated at the end
of a whole forecasting horizon span Γ = H , where the ML
are parallelly processed by mRMR [26] by extracting a feature
subsets of NS = 5 from a N ′ ≈ 2000 feature set. The DAFT-
E employs V = 3 FFs, where the weight values are Λ1 = 0.5,
Λ2 = 0.35, and Λ3 = 0.15. The optimal parameters are chosen
after a grid search analysis on a subset of the original data.

B. Performance Validation Metric

Validation is a crucial step in the assessment of a forecasting
model but in literature the focus is typically on the average
prediction accuracy (e.g. Mean-Squared-Error) disregarding
other relevant aspects for the decision maker. Here we propose
a more general approach to assess the performance accounting
for other performance measures like the spatial spread analysis
and the tail error distribution analysis.

1) Spatial performance analysis: The spatial analysis of
forecasting performance is important to assess possible dis-
tortions in studies that employ the obtained predictions, since
an unbalanced forecasting performance may compromise the
quality of the decision making process.
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A reliable multivariate wind power forecasting methodology
should assure a consistent prediction performance across mea-
surement points. Inconsistent performance may compromise
the quality of the decision-making process based on the
obtained predictions.

Traditionally, the prediction accuracy of a multivariate fore-
casting methodology is assessed by computing a single error
metric over all the target variables.

Unfortunately, this approach neglects the distribution of the
forecasting model errors across the target variables. Therefore,
a novel validation procedure is proposed to fulfill this gap
inspired by the modern portfolio theory [31].

In particular, the following quantities are computed:
• µ

(ω,k,h)
ERR : the average value of the considered error metric

ERR across the target variables for the forecasting model
ω, forecasting horizon h and trial k.

• σ
(ω,k,h)
ERR : the standard deviation of the considered error

metric across the target variables for the forecasting
model ω, forecasting horizon h and trial k;

Finally, a bivariate distribution is built by collecting µ
(ω,k,h)
ERR

and σ
(ω,k,h)
ERR for each trial in the experiment.

The results are visualized by means of a bivariate exten-
sion [18] of the univariate box-plot where the conventional
Interquartile Range and whiskers are replaced by two convex
hull polytopes. In particular, the 50% of population is included
in dark-colored area (bag), the 99.7% in the the light-colored
one (fence), and the points outside the fence are considered
outliers (Fig. 3,4). The position of the bag and fenced area on
the plot indicate the absolute performance while the size of
the areas is an indicator of the uniformity of the performance
across the wind farms.

2) Robustness Assessment:
a) Tail Analysis of Wind Power Forecasting Error:

Although the spatial analysis of the performance returns a clear
picture of the forecasting model behavior, it does not supply
enough information about the worst-case configuration. To ad-
dress such aspect, we adopt the tail analysis of the forecasting
error distribution by using some well-known metrics in the
financial domain: the value at risk (VaR), and the conditional
value at risk (cVaR). Traditionally, these metrics summarize
the probability distribution of financial returns to determine
the worst-case financial losses given a risk threshold [32] and
a strategy. In this manuscript, we apply them to the probability
distribution of the forecasting errors, where each forecasting
model corresponds to a different strategy. In other words,
we are assessing, given an identical risk threshold for all
forecasting models, which one returns the least absolute error.

In order to maintain a coherent interpretation with respect
to the financial counterparts, the analysis considers absolute
errors.

The rationale is twofold: first, any gap between predicted
and actual value is detrimental regardless of the sign; second,
we do not convert the forecasting error into TSO economic
losses since this would require a deeper analysis (and more
complex simulations) which are out of the scope of the
manuscript.

Although it relies on some simplifying hypotheses, this
approach is crucial to assess the reliability of the forecasting

model. Indeed, it is reasonable to assume that the lower is
the risk to commit a large prediction error, the lower is the
possible associated economic losses.

Algorithm 2 Algorithm for MAE,VaR, and cVaR estimation
for the ω-th model

1: for h ∈ {1, . . . ,H} do
2: for k ∈ {1, . . . ,K} do
3: Compute the absolute error matrix
4: Compute MAE(ω,k,h),VaR(ω,k,h),and cVaR(ω,k,h)

5: end for
▷ A K MAE, VaR, and cVaR value collection is obtained,
hence the statistical quantities are computed again on the
obtained distributions

6: MAE
(ω,h) ← mean({MAE(ω,1,h), . . . ,MAE(ω,K,h)})

7: VaR
(ω,h) ← VaRα({VaR(ω,1,h), . . . ,VaR(ω,K,h)})

8: cVaR
(ω,h) ← cVaRα({cVaR(ω,1,h), . . . , cVaR(ω,K,h)})

9: end for

Algorithm 2 summarizes the procedure to estimate VaR and
cVaR from the experimental results, given the ω-th forecasting
model, and the h-th forecasting horizon, where

VaRα(X) := min{z|F̂X(z) ≥ α} (11)

cVaRα(X) := E[X|X ≥ VaRα(X)] (12)

where X is the absolute error distribution, which is obtained
collecting forecasting error across all the wind farms, given the
ω-th” model and h-th forecasting horizon, F̂X is the empirical
cumulative distribution function, and α is the confidence level.
In the results, VaR and cVaR are compared to the average value
of X that is the Mean Absolute Error (MAE) (Fig. 1).

mean V aRα cV aRα Xi

pdf(Xi)

Fig. 1: Qualitative visualization of the expected value (mean),
V aRα, and cV aRα for a generic non-negative loss distribu-
tion.

It should be noted that VaR is the maximum value the
decision-maker accepts to lose in a percentage of the cases
equal to α, as shown in (11). Mathematically, the VaR is
equivalent to the α-th percentile of an empirical distribution.

The smaller is this value, the smaller is the maximum
absolute forecasting error we accept to commit by using a
forecasting model in the α % of cases. In other words, the
lower the VaR, the more reliable the model is.

Unfortunately, VaR is not such a good metric of risk since
it neglects the loss values greater than VaR. Differently, cVaR
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is a coherent and robust measure of risk. Hence, it supplies
information about the expected losses greater than VaR as
shown in (12). Particularly, cVaR is computed through the
Convex Combination Formula [32]. In other terms, the cVaR
represents the upper bound for the worst expected forecasting
error.

b) Current Limits and Future Developments: A possible
improvement of the proposed analysis could relate the fore-
casting errors to the impact of the decisions made by the
operators on the basis of the forecasts [33]. For example,
an operator may be induced to buy excess reserves or up-
regulation if the forecasts exceed the reality, or, on the other
way round, lines may be overloaded and generation could
exceed safety margins.

A future direction of our research will be oriented toward
the conceptualization of decision support systems, which aim
at defining optimal bidding strategies of reserve capacity on
ancillary service markets on the basis of multiple forecasted
profiles.

The main idea is to apply the proposed methods in the
task of forecasting the wind power production profiles, the
market prices and the power network congestions in order
to identify the bidding strategies that minimize the expected
cost of reserve procurement. To this aim, we are currently
developing stochastic optimization models, which estimate
the probability distribution of the forecasting errors in order
to generate a comprehensive set of scenarios. These models
might also be used to estimate the economic impacts derived
by the employment of the proposed forecasting models in a
realistic operation scenario.

C. Benchmarks

The DAFT-E approach is benchmarked against a number of
state-of-the-art techniques, which are summarized in Table I.

1) Univariate Techniques: Univariate approaches may be
used to tackle a multivariate forecasting task by decomposing
it in N SISO tasks or N MISO tasks.

SISO approaches typically rely on statistical approaches
like Naive and Holt models [34]. The Naive is a random
walk model, assuming that future values will be the same
as that of the last known observation, while Holt performs
an exponential smoothing [35] of the data (controlled by the
parameter αHW , fitted from the available data), followed by an
extrapolation assuming a linear trend. Despite its trivial nature,
in real-world tasks the Naive method often outperforms much
more complex learning strategies: for that reason it will be
considered as a baseline to normalize all our accuracy results
in Section V.

MISO approaches typically use supervised learning ap-
proaches [36]. In the experimental session we considered
a lazy learning (k-nearest neighbors technique [29], [37])
and an ensemble based technique (random forest [38]). In a
lazy learning technique the learning process from the data is
delayed until prediction time, while the k-nearest neighbor
aspect allows performing a prediction of the future values
given the k past points most similar to the prediction candidate.
Our choice of a k-nearest neighbors lazy learning technique

is motivated by two reasons: the reduced computational cost
and the capability of the model to exploit local patterns in the
data. The optimal value of k employed for the predictions, is
automatically determined according to the input data supplied
to the method. On the other hand, an ensemble technique com-
bines the predictions coming from different base models [39],
in order to improve the forecasting accuracy of the individual
models and reduce the variance of the prediction. A random
forest is constructed by combining several individual models
(NRF decision trees, whose number is optimized during the
learning process), with a bagging procedure (i.e. training
each model on a different subset, uniformly sampled with
replacement from the original dataset). In order to assess the
impact of the feature engineering and dimensionality reduction
methods, these categories of models have been tested on the
raw data, as well as the feature augmented, embedded data,
both with and without PCA.

2) MIMO Techniques: MIMO approaches aim to capture
in a single model both the temporal and cross-series (e.g.
spatial) dependencies between time series. In our experiments,
we considered models assuming a linear dependence between
the time series (VAR, in its standard form [8] and in a state-
of-the-art approach with adaptive regularization [12]) as well
as a non-linear dependence among the variables (with an end-
to-end recurrent neural network).

a) VAR: A VAR model describes the evolution of the
multivariate time series as a linear function of their past values.
A VAR model is characterized by its model order L (L = 5
for our experiments), denoting how many values from the past
of the time series should be taken into consideration for the
forecast, VAR and state space models have been shown to be
equivalent and their equivalence is discussed in [40].

For a VAR model to be employed, data must meet some
conventional requirements (e.g. stationarity). Also they are not
suitable for high-dimensional time series data since a VAR
model of N attributes with an embedding order equal to L
has at least LN2 parameters (L Ak matrices). This number
of variables can be handled in the case of small problems
which involve only a moderate number of attributes (i.e. N
smaller than 20). In order to deal with the dimensionality
issue, we included in our experiments VARon it, an optimized
version of a VAR(L) model, where the number of parameters
is reduced by means of a LASSO regularization (controlled
by the parameter λV AR, optimized on the input data), and the
model parameters are updated by means of an online procedure
with a reduced computational cost [12].

b) Recurrent Neural Networks: Recurrent Neural Net-
works (RNN) is a state-of-the-art neural network family of
approaches where recurrent connections between nodes allow
the modeling of dynamic temporal dependencies.

For our experiments, we considered a RNN, employing one
hidden layer of LSTM (Long-Short Term Memory cells [41])
cells, a specific type of neurons optimized for modeling
temporal dependencies and for faster training. Despite these
advances, the effective training of RNN remains a challenging
task, due to the high number of hyperparameters to tune
(i.e. layers, cells per layer, dropout, regularization). In our
experiments we fixed the hidden layer number to one, and
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TABLE I: Characteristics of the considered Wind Power Forecasting Models.
Model Type Architecture Parameters Feature Engineering Embedding Feature Selection Cardinality Reduction Strategy
Dynamic Adaptive Feature Temporal Ensemble – DAFTE Hybrid Ensemble N MISO V,Λ (Yes) (Yes) (Yes) - MRMR (No) Direct
Naive it – Persistence (*) Naive N SISO ∅ (No) (No) (No) (No) Iterative
Random Forest FS all (*) Machine Learning N MISO NRF (Yes) (Yes) (Yes) - MRMR (No) Direct
Random Forest FS raw (*) Machine Learning N MISO NRF (No) (Yes) (Yes) - MRMR (No) Direct
Lazy Learning FS all (*) Machine Learning N MISO k (Yes) (Yes) (Yes) - MRMR (No) Direct
Lazy Learning FS raw (*) Machine Learning N MISO k (No) (Yes) (Yes) - MRMR (No) Direct
Holt-Winter Exponential Smoothing – Es it Statistical N SISO αHW (No) (No) (No) (No) Iterative
Lazy PCA Machine Learning N MISO k (Yes) (Yes) (No) (Yes) - PCA Direct
Long Short Term Memory RNN - LSTM Deep Learning MIMO NLSTM , δLSTM (No) (No) (No) (Yes) - PCA Direct
Random Forest PCA Machine Learning N MISO NRF (Yes) (Yes) (No) (Yes) - PCA Direct
Var it Statistical MIMO L (No) (No) (No) (No) Direct
Online Var Statistical MIMO L, λV AR (No) (No) (No) (No) Direct
(*) internal algorithms of DAFT-E

we performed a grid search, on the test set, over different
values of cells per layer, dropout rate in the input and recurrent
elements, and regularization technique (no regularization, L1,
L2, and a combination of both). The resulting architecture
employs NLSTM = 100 cells, no regularization and a dropout
rate δLSTM = 0.2 for both the input and recurrent elements. It
should be noted that using the test set for the model selection
might yield over-optimistic performance. Similar architectures
have been considered as state-of-the art techniques in a recent
survey [14].

V. EXPERIMENTAL RESULTS

The experiments were run on a shared infrastructure
equipped with Intel Xeon E5-2640 V4 – 10 core CPU and
Asus GTX 1080 TI GPU. All the forecasting models have been
implemented with the same programming language (R 3.6),
employed in serial mode (on a single core /single GPU, in case
of deep learning models), with the same limitation in terms
of RAM (5GB of maximum available memory). Figs. from 2
to 6 visualize the experimental results of the two benchmarks.
Since the Australian benchmark is public (unlike the Italian),
due to space restrictions, we decided to allocate more space
to the figures that illustrate the Australian results.

The MSE reduction ratio (nMSE) between the ω-th model
and the Naive baseline for the k-th trial and the h-th forecast-
ing horizon is computed as:

nMSE(ω,k,h) = (MSE(ω,k,h)/MSE(Naive,k,h))− 1 (13)

Fig. 2 shows the distribution of the nMSE according to (13)
across K trials and for different forecasting horizons. Note that
only negative values of nMSE correspond to an improvement
in accuracy with respect to the Naive baseline.

Figs. 3 and 4 show the bag-plots of the bivariate distribution
µMSE-σMSE obtained for the Australian and Italian benchmark,
respectively. The closer is the cloud point to the lower-left
corner (low mean - low variance of the forecasting error), the
better is the performance of the ω-th forecasting model over
the K-th trials. Note that in this visualisation the variability
over the vertical (horizontal) axis is related to the variability
across (within) trials. Fig. 3 shows that the DAFT-E combi-
nation strategy outperforms the single components (Lazy FS
all, RF FS all, RF FS raw) taken individually, as well as state-
of-the-art approaches. We get a similar result for the Italian
benchmark (Fig. 4) but, for the sake of space, we report only
a smaller set of approaches.

Fig. 5 shows the risk measures (MAE, VaR (11) and
cVaR (12)) across different forecasting horizons. This rep-
resentation allows to compare the average performance of

different forecasting techniques (MAE) vs the worst-case
(α = 95%) configurations. In particular, we consider that the
lower the increment of those quantities for increasing horizons,
the higher is the robustness.

Finally, Fig. 6 shows the computational times of all models.
The total computation time accounts for feature engineering,
embedding, feature selection, and model training steps. If a
model does not include some of these steps, the corresponding
computational time is null.

Overall, some general considerations may be made on the
basis of the experimental results:

1) Multi-step-ahead wide area wind power forecasting rely-
ing solely on historical power data is a challenging task,
as shown by the difficulty in improving over simpler
baselines (Naive, Holt-Winters).

2) The proposed approach DAFT-E is a promising alter-
native to the state-of-the-art forecasting strategies in
this context. In terms of nMSE, DAFT-E is the best
model, followed by VARon it (Fig. 2). The LSTM dir
accuracy is definitely the worst one. The ES performance
dramatically decreases as h increases;

3) The DAFT-E has a balanced performance on the plane
µMSE-σMSE over h as shown by Fig. 3. This is shown
by the fact that its bagplot area is the smallest and is
closer to the origin with respect to those of multivariate
approaches like VARon it;

4) The DAFT-E has the least absolute error in terms of VaR
and CVaR, for a α = 95% confidence level. In particular,
the best DAFT-E is the one using RF FS all and RF FS
raw (Fig. 5);

5) The addition of derived features to the information set
improves the accuracy compared to the adoption of raw
features only, particularly for large h (Fig. 3);

6) DAFT-E demands a much larger computational time than
the fastest method (VARon it), yet such overhead is
compensated by a better performance accuracy (Fig. 6).
The same reasoning does not apply to LSTM dir whose
heavier computational time is not compensated by an
increase in accuracy;

7) The embedding procedure covers about 50% of the
entire computational time. Future work will focus on
speeding up this step (e.g. by making it parallel).

VI. CONCLUSIONS

Erratic wind behavior may engender critical issues during
the grid operation. To ensure safety it is then essential to
develop effective and reliable models relying on the minimal
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Fig. 2: Visualization of the nMSE across the forecasting horizon for the Australian case study. The lower the nMSE is, the
better the corresponding model is performing. An nMSE < 0 indicates that the corresponding model is outperforming the Naive
model. The plot includes the Proposed Model (DAFT-E), the best performing algorithms among those combined in DAFT-E
(RF FS all, RF FS raw), and the benchmark models showing the best performance. The same figure with greater vertical range
scale is included into the supplementary material. The forecasting horizon for each panel is equal to h · 15 min.

amount of data made available from the remote terminal units
of the grid (wind power injections).

This paper proposes a machine-learning based model
for wind power forecasting (DAFT-E), which deploys dy-
namic adaptive ensemble and feature extraction techniques.
It achieves a lower overall MSE or MAE than other state-of
the art time series methods, while also lowering variability
of performance among sites (geographically) and over time
(different forecast periods) and also lowering the frequency
(risk) of large errors Moreover, the proposed multivariate-
to-univariate problem decomposition approach is well-suited
for parallel computation. In combination with an efficient
feature selection process, this approach could easily scale
up to larger multivariate problems. This study supports the
idea that, despite the success of deep learning representation
learning strategies in a number of applied settings (e.g. image
classification), we should not expect any “a priori” superiority
of such methods, notably in power systems settings where
expert knowledge is relevant and accurate.

Further studies will focus on further exploration of auto-
matic feature selection and algorithm choice for the ensemble,
as well as the usage of multivariate models in order to exploit
the spatio-temporal correlation among the wind farms.
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