

Machine Learning for Multi-step Ahead Forecasting of Volatility Proxies

ULB

RUX

O E B

ш Ж

S

VER

z

Jacopo De Stefani, Ir. - jdestefa@ulb.ac.be Prof. Gianluca Bontempi - gbonte@ulb.ac.be Olivier Caelen, PhD - olivier.caelen@worldline.com Dalila Hattab, PhD - dalila.hattab@equensworldline.com

INESC-ID - THOR: algoriTHms and cOmputer progRamming seminar

Lisbon, Thursday 2nd November, 2017

Problem overview

ULB What is volatility?

Definition

Volatility is a statistical measure of the dispersion of returns for a given security or market index.

A closer look on data - Volatility proxies

Models for volatility

ULB

S

ULB Models for volatility

RUXELLES

m

BRE DE

NIVERS

ULB Models for volatility

RUXELLES

m

В

LIBR

NIVERS

ULB Models for volatility

S ш ш \times Ľ m ш ш × m _ 111 S Ľ ш > _ z

Multistep ahead TS forecasting - ?

ULB

хn

RSITÉ

ш > |

Definition

Given a univariate time series $\{y_1, \dots, y_T\}$ comprising T observations, forecast the next H observations $\{y_{T+1}, \dots, y_{T+H}\}$ where H is the forecast horizon.

Hypotheses:

- ► Autoregressive model y_t = m(y_{t-1}, · · · , y_{t-d}) + ε_t with lag order (embedding) d
- ε is a stochastic iid model with $\mu_{\varepsilon} = 0$ and $\sigma_{\varepsilon}^2 = \sigma^2$

Multistep ahead forecasting for volatility

State-of-the-art NAR

1 Input 1 Output

Multistep ahead forecasting for volatility

7/33

Multistep ahead forecasting for volatility

Direct method

- A single model f^h for each horizon h.
- Forecast at h step is made using h^{th} model.
- Dataset examples (d = 3, h = 3):

Direct NAR

Direct NARX

	х		У
σ_3^P	σ_2^P	σ_1^P	σ_5^P
σ_4^P	σ_3^P	σ_2^P	σ_6^P
σ^P_{T-5}	σ^P_{T-6}	σ^P_{T-7}	σ_{T-2}^P

		2	ĸ			у	
σ_3^P	σ_2^P	σ_1^P	σ_3^X	σ_2^X	σ_1^X	σ_5^P	
σ_4^P	σ_3^P	σ_2^P	σ_4^X	σ_3^X	σ_2^X	$\sigma_6^P \mathbb{N}$	
					·		
σ_{T-5}^P	σ^P_{T-6}	σ^P_{T-7}	σ_{T-5}^X	σ_{T-6}^X	σ_{T-7}^X	σ^P_{T-2}	

Experimental setup

ULB

ES

RUXELL

m ш

ш

× m

Ξ

ι. E

S

Ľ ш

> | N

2 TS Input **1 TS Output** **Data:** Volatility proxies σ^X , σ^P from CAC40:

- Price based
 - \blacktriangleright σ_i family ?
- Return based
 - ► GARCH (1,1) model ?
 - Sample standard deviation

Models:

- Feedforward Neural Networks (NAR, NARX)
- k-Nearest Neighbours (NAR,NARX)
- ► Support Vector Regression (NAR,NARX)
- ▶ Naive (w/o σ^X)
- GARCH(1,1) (w/o σ^X)
- Average (w/o σ^X)

Correlation meta-analysis (cf. ?)

- 40 time series (CAC40)
- Time range: 05-01-2009 to 22-10-2014
- 1489 OHLC samples per TS
- Hierarchical clustering using ?
- All correlations are statistically significant

ULB **NARX** forecaster - Results ANN

ULB **NARX** forecaster - Results ANN

ш \times × m ш ш ¥ m _ _ SITÉ ¥ ш

ULB NARX forecaster - Results KNN

19

NARX forecaster - Results KNN

ULB NARX forecaster - Results SVR

× Ľ m ш ш ¥ m _ _ ν.u E S ¥ ш > z

ULB NARX forecaster - Results SVR

ш _ ш × Ľ m ш ш ≃ m _ _ чц. SIT ¥ ш > | N

S

16/33

Conclusions

- Correlation clustering among proxies belonging to the same family, i.e. σ_t^i and $\sigma_t^{SD,n}$.
- All ML methods outperform the reference GARCH method, both in the single input and the multiple input configuration.
- Only the addition of an external regressor, and for h > 8 bring a statistically significant improvement (paired t-test, pv=0.05).
- No model appear to clearly outperform all the others on every horizons, but generally SVR performs better than ANN and VINC k-NN.

Multivariate extension - DFML - ?

- Dimensionality reduction/increase
 - ► PCA

ULB

BRUXELLES

2

<u>ν</u>υ

s

Ľ

ш

2

z

Autoencoder

Forecast

- Lazy Learning
- Vector Auto Regressive

Outperforms Recurrent Neural Network, Partial Least Squares, Vector Auto Regressive, Singular Spectrum Analysis, Univariate and Naive.

ULB Future work - Open problems

- Efficient multivariate predictive models?
- Large scale dimensionality reduction techniques?
 - Component-iterative PCA
 - Sample-iterative PCA
 - Autoencoders
- Streaming approaches to multivariate forecasting?

ULB ∽

ш

BRUX

8

NIVERS

Obrigado pela vossa atenção! Alguma pergunta/observação?

jacopo.de.stefani@ulb.ac.be

Find the paper at:

Open vacancy - Post-doc:

BRE DE BRUX

UNIVERSITÉ LI

Appendix

System overview

System overview

System overview

ULB Correlation analysis - Methodology

▶ 40 Time series (CAC40)
 ▶ Time range: 05-01-2009 to 22-10-2014 ⇒ 1489 OHLC

samples per TS

UXELLES

2

ш

×

S

z

ULB NARX forecaster - Methodology

S

Volatility proxies (1) - ?

Closing prices

$$\hat{r}_0(t) = \left[\ln\left(\frac{P_{t+1}^{(c)}}{P_t^{(c)}}\right) \right]^2 = r_t^2$$
(1)

Opening/Closing prices

$$\hat{\sigma}_{1}(t) = \underbrace{\frac{1}{2f} \cdot \left[\ln \left(\frac{P_{t+1}^{(o)}}{P_{t}^{(c)}} \right) \right]^{2}}_{\text{Nightly volatility}} + \underbrace{\frac{1}{2(1-f)} \cdot \left[\ln \left(\frac{P_{t}^{(c)}}{P_{t}^{(o)}} \right) \right]^{2}}_{\text{Intraday volatility}}$$
(2)

OHLC prices

$$\hat{\sigma}_{2}(t) = \frac{1}{2\ln 4} \cdot \left[\ln \left(\frac{P_{t}^{(h)}}{P_{t}^{(l)}} \right) \right]^{2}$$

$$\hat{\sigma}_{3}(t) = \underbrace{\frac{a}{f} \cdot \left[\ln \left(\frac{P_{t+1}^{(o)}}{P_{t}^{(c)}} \right) \right]^{2}}_{\text{Nightly volatility}} + \underbrace{\frac{1-a}{1-f} \cdot \hat{\sigma}_{2}(t)}_{\text{Intraday volatility}}$$

$$(4)$$

$$26/33$$

Volatility proxies (2) - ?

► OHLC prices

$$u = \ln\left(\frac{P_t^{(h)}}{P_t^{(o)}}\right) \qquad d = \ln\left(\frac{P_t^{(l)}}{P_t^{(o)}}\right) \qquad c = \ln\left(\frac{P_t^{(c)}}{P_t^{(o)}}\right)$$
(5)

$$\hat{\sigma}_4(t) = 0.511(u-d)^2 - 0.019[c(u+d) - 2ud] - 0.383c^2$$
 (6)

$$\hat{\sigma}_5(t) = 0.511(u-d)^2 - (2\ln 2 - 1)c^2$$
 (7)

$$\hat{\sigma}_{6}(t) = \underbrace{\frac{a}{f} \cdot \log\left(\frac{P_{t+1}^{(o)}}{P_{t}^{(c)}}\right)^{2}}_{\text{Nightly volatility}} + \underbrace{\frac{1-a}{1-f} \cdot \hat{\sigma}_{4}(t)}_{\text{Intraday volatility}} \tag{8}$$

Volatility proxies (3)

► GARCH (1,1) model - ?

$$\sigma_t^G = \sqrt{\omega + \sum_{j=1}^p \beta_j (\sigma_{t-j}^G)^2 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2}$$

where $\varepsilon_{t-i} \sim \mathcal{N}(0,1)$, with the coefficients $\omega, \alpha_i, \beta_j$ fitted according to ?. Sample standard deviation

$$\sigma_t^{SD,n} = \sqrt{\frac{1}{n-1} \sum_{i=0}^{n-1} (r_{t-i} - \bar{r})^2}$$

 $\bar{r_n} = \frac{1}{n} \sum_{n=1}^{\infty}$

where

$$r_t = \ln\left(\frac{P_t^{(c)}}{P_{t-1}^{(c)}}\right)$$

ULB

28/33

? - Error measures

ULB

ES

? - Scale dependant

- $e_t = y_t \hat{y}_t$ $\blacktriangleright \text{ MSE} : \frac{1}{n} \sum_{t=0}^n (y_t - \hat{y}_t)^2$
- **RMSE** : $\sqrt{\frac{1}{n} \sum_{t=0}^{n} (y_t \hat{y}_t)^2}$
- MAE : $\frac{1}{n} \sum_{t=0}^{n} |y_t \hat{y}_t|$

 $\blacktriangleright \mathsf{MdAE}:$ $Md_{t \in \{1 \cdots n\}}(|y_t - \hat{y}_t|) \land \mathsf{INC}$

30/33

ULB ? - Scale independant S ш × Ľ m «MdAPE ш MAPE ш × œ SMAPE SITÉ Scale independant e c ш MdAPE > _ z RMdSPE RMSPE

- MAPE : $\frac{1}{n} \sum_{t=0}^{n} | 100 \cdot \frac{y_t - \hat{y}_t}{y_t} |$
- $\blacktriangleright \mathsf{MdAPE}:$ $Md_{t \in \{1 \cdots n\}} (\mid 100 \cdot \frac{y_t - \hat{y}_t}{y_t} \mid)$
- **RMSPE** : $\sqrt{\frac{1}{n}\sum_{t=0}^{n}(100 \cdot \frac{y_t - \hat{y}_t}{y_t})^2}$
- **RMdSPE** : $\sqrt{Md_{t \in \{1 \dots n\}} ((100 \cdot \frac{y_t - \hat{y}_t}{y_t})^2)}$
- **SMAPE**: $\frac{1}{n} \sum_{t=0}^{n} 200 \cdot \frac{|y_t - \hat{y}_t|}{y_t + \hat{y}_t}$
- ► sMdAPE : $Md_{t \in \{1 \dots n\}}(200 \cdot \frac{|y_t - \hat{y}_t|}{y_t + \hat{y}_t})$

$$r_t = \frac{e_t}{e_t^*}$$

- MRAE : $\frac{1}{n} \sum_{t=0}^{n} |r_t|$
- $\blacktriangleright \mathsf{MdRAE} : Md_{t \in \{1 \cdots n\}}(\mid r_t \mid)$
- GMRAE : $\sqrt[n]{\frac{1}{n} \prod t = 0^n |r_t|}$

► MASE : $\frac{1}{T} \sum_{t=1}^{T} \left(\frac{|e_t|}{\frac{1}{T-1} \sum_{i=2}^{T} |Y_i - Y_{i-1}|} \right)$

32/33

ULB S

? - Relative measures

- **RelX** : $\frac{X}{X_{\text{bench}}}$
- ▶ Percent Better : PB(X) = $100 \cdot \frac{1}{n} \sum_{\text{forecasts}} I(X < X_b)$

where

- X: Error measure of the analyzed method
- ► X_b: Error measure of the benchmark