
https://doi.org/10.1007/s40866-020-00090-8

ORIGINAL PAPER

Robust Assessment of Short-TermWind Power Forecasting Models
on Multiple Time Horizons

Fabrizio De Caro1 · Jacopo De Stefani2 ·Gianluca Bontempi2 · Alfredo Vaccaro1 ·Domenico Villacci1

Received: 7 February 2020 / Accepted: 24 August 2020 / Published online: 18 October 2020
© Springer Nature Singapore Pte Ltd. 2020

Abstract
The massive penetration of renewable power generation in modern power grids is an effective way to reduce the impact
of energy production on global warming. Unfortunately, the wind power generation may affect the regular operation of
electrical systems, due to the stochastic and intermittent nature of the wind. For this reason, reducing the uncertainty about
the wind evolution, e.g. by using short-term wind power forecasting methodologies, is a priority for system operators
and wind producers to implement low-carbon power grids. Unfortunately, though the complexity of this task implies the
comparison of several alternative forecasting methodologies and dimensionality reduction techniques, a general and robust
procedure of model assessment still lacks in literature. In this paper the authors propose a robust methodology, based on
extensive statistical analysis and resampling routines, to supply the most effective wind power forecasting method by testing
a vast ensemble of methodologies over multiple time-scales and on a real case study. Experimental results on real data
collected in an Italian wind farm show the potential of ensemble approaches integrating both statistical and machine learning
methods.

Keywords Wind Power Forecasting · Wind Energy · Robust Forecasting · Ensemble Forecasting

Nomenclature

Symbols

D[N, S] Matrix of observations of size [N, S]
P[N, φ] Predictor matrix of size [N, φ]
R[N, ρ] Target matrix of size [N, ρ]
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N Number of observations
φ Number of predictors
ρ Number of targets
c Number of lagged time windows
γ Number of smoothed variables
L Auto-regressive lag
H Forecasting horizon (number of steps ahead)
Φ Number of features after pre-processing
X0 Embedded Input Matrix
Y0 Embedded Output Matrix
X(v) Matrix X for test case v

Y(v) Matrix Y for test case v

X(v)
trn Training matrix for test case v

X(v)
val Validation matrix for test case v

r1,...,N Generic smoothed time series
RSS Residual Sum of Squares
T SS Total Sum of Squares
A Number of samples in validation set
ya, ŷa ath actual,predicted power in validation set
ŷ mean actual value in validation set
σ actual power Standard deviation in validation

set

Abbreviations
Ad. Adaptive Ensemble Forecasting
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(dynamic weights)
ANN Artificial Neural Network
ARIMA Auto Regressive Integrated

Moving Average
ARMA Auto Regressive Moving Average
CFD Computational Fluid Dynamics
DEM Digital Elevation Model
ELM Extreme Learning Machine
GRU Gated Recurrent Unit (ANN)
GBM Gradient Boosting Machine
HW-ES Holt-Winter

Exponential Smoothing
HYB Hybrid method
LSTM Long Short Term Memory unit
M3 M3 competition
ML Machine Learning
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
mRMR minimum Redundancy

Maximum Relevancy
nMSE Normalized MSE
NWP Numerical Weather Prediction
PH Physical method
PCA Principal Component Analysis
RF Random Forest
RMSE Root Mean Square Error
R2 R-squared error
Av. Simple Ensemble Forecasting
SCADA Supervisory Control

and Data Acquisition
SF Statistical Forecasting
SVM Support Vector Machine
WPF Wind Power Forecasting
WTG Wind Turbine Generator

Introduction

The wide scale employment of renewable generation plants
in modern power grids is one of the most effective ways
to produce electric energy without increasing the emission
of greenhouse gases. [17]. However, the large penetration
of renewable power generation may cause several issues in
the operation of the electric grids, due to the stochastic and
intermittent nature of the renewable sources [12, 33]. The
management of uncertainty is then a major challenge for
system operators [8, 16], and wind producers [39].

In particular, the industrial applications for wind power
forecasting from 1 to 6 hours are strongly related to the wide
penetration of renewable variable energies in modern power
grids. This is pushing a transition phase in the electricity
markets to become more flexible causing the introduction
of rolling markets, as done in UK and Australia, and shorter

intra-day-auction, as done in Europe, in order to correct the
scheduling of day auction markets [45]

Particularly, the intra-day market platforms are structured
as both discrete auction market and continuous intra-day
markets, which operates with time ranges from 5 to 90
minutes. For this reason, the adoption of accurate wind
power forecasting after the day-ahead gate closure allows
the wind producers to tune up the bidding offers in intra-
day markets trying to correct the previous forecasting error
in advance, especially in the continuous market platform of
tomorrow.

Hence, in according to the opportunity to adjust the
bidding offers in continuous market platforms all the chain
of wind power forecasting models over the time deserve of
the same importance, needing high accuracy in according to
the requested forecasting horizon.

Furthermore, transmission system operators uses short
term wind power forecasting to manage imbalances
and ancillary services procurement. Thus, in light of
this developing a pipeline for WPFs model represent a
strategic concept to chose the model that best suites the
corresponding needs.

In literature, many statistical, physical and hybrid
approaches have been proposed for Wind Power Forecasting
(WPF) at different timescales and with different objectives.
In particular, we distinguish between: a) ultra-short-term
forecasting (1 minute - 1 hour) to address real-time activities
in electricity market and wind turbine control, b) short term
(1h - 6h) forecasting for balancing activities, c) medium-
term (6h - 1 week) forecasting for energy market bidding
and d) long-term forecasting (> 1w) for planning and
maintenance of wind farms [49].

As far as statistical approaches are concerned, we dis-
tinguish between statistical forecasting (SF) and machine
learning (ML). The former approach makes a number
of explicit assumptions (e.g. parametric distribution, non-
multicollinearity, homoscedasticity) about the data distri-
bution while the second relies on non parametric and
data-driven strategies for fitting and model selection.

Well-known examples of statistical forecasting are the
Auto-Regressive Moving Average (ARMA) proposed in
[42] for power generation prediction of wind farms and the
Box-Jenkin method [25] based on fractional auto-regressive
integrated moving average (f-ARIMA) models.

ML models make no explicit assumptions about data
distribution and can be characterized in terms of the adopted
hierarchical and multi-step-ahead strategy. In terms of
hierarchical forecasting we distinguish between the spot
approach returning the prediction for each wind generator
(with detrimental impact on the computational cost) and
the aggregate approach which targets the overall wind farm
power generation (suitable for large area prediction and when
producers share confidential data to system operators).
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In terms of multi-step-ahead strategy [5] we distinguish
here between the iterated strategy approach which uses
only one trained model to predict the full forecasting span
horizon and the direct approach which learns a different
models for any step of the forecasting span.

While the former approach is easy to implement but is
highly sensitive to the estimation error [10], the second
does not take into consideration any relationship between
predicted values at different horizons [4]. Furthermore,
novel strategies aimed at considering the forecasting error
as correction factor in multi-step ahead WPF have been in
introduced by [29] and [21].

Several examples of ML solutions for wind forecasting
have been proposed in literature: [48] proposed a WPF
model based on Support Vector Machine (SVM), [43] used
Deep Learning Models based on an Extreme Learning
Machine (ELM) to supply Prediction Interval for a large
wind farm and [2] introduced a Hybrid Neural Network
architecture, [44] proposed a deep learning ensemble
approach and walevet decomposition for probabilstic WPF.

Physical (PH) approaches supply the wind power
forecasting by using mathematical models of the weather at
large scale, called Numerical Weather Predictions (NWP),
and adapting them to regional scale by using a Digital
Elevation Model (DEM), which allows to consider terrain
orography and roughness by solving Computational Fluid
Dynamic problems (CFD). In a second phase, the wind
speed is converted into power by using positions and power
curves of the wind generators. Unfortunately, the high
computational cost restrains their application to medium
and long term forecasting horizons.

Hybrid (HYB) approaches aims to keep the best of
both worlds by combining NWP with statistical post
processing [18, 46].

Since the literature on WPF is wide, there is an increasing
need for a quantitative and statistically founded comparison
of existing approaches. Nevertheless little effort has been
done so far in this direction. Among the few examples we
cite [13], which tested several WPF models on different
horizons in terms of percentage Mean Absolute Percentage
Error (MAPE), [11] discussing a spatial comparison on
daily wind power forecasting and [26] which took into
consideration only the mean value for an ensemble of
accuracy metrics.

Korprasertsak and Leephakpreeda [26] presents an
assessment in terms of prediction interval of several
Artificial Neural Networks models while [35] introduced
the t-student test between the assessed models for short
term WPF models. Unfortunately, the t-test is subject to α

(probability error of I type) inflation in case of multiple
comparisons [27], reducing its reliability.

For these reasons, we have proposed an exhaustive
statistical analysis of many promising forecasting models,

inspired to the assessment procedure effected by the M3
competition [32]. M3 has been the third edition of a famous
forecasting competition where the competing models have
been widely assessed using large number of data-sets,
differing for nature and features, and a vast number of
accuracy metrics.

This paper intends to bring the following main contribu-
tions to the literature:

1. The introduction of a reliable WPF benchmark, which
processes the power generation, the wind speed and
the direction profiles of a real 30MW wind farm (15
wind generators) situated on the ridge of Apennines
in southern Italy, and characterized by a very complex
orography

2. the formalization of a novel pipeline aimed at design-
ing, and assessing a data driven WPF model;

3. a rigorous statistical assessment of different Statistical
and Machine Learning-based forecasting models on
several prediction horizons, ranging from 1 to 6 hours
ahead;

4. the conceptualization of multiple dynamic techniques
operating in ensemble prediction for solving the wind
power forecasting problem;

5. the development of a novel tool for decision support
strategy aimed at analyzing the performance of a large
set of heterogeneous forecasting models on multiple
case studies, and identifying, for each prediction
horizon, the most reliable forecasting model;

The expectation of the authors are the results of this paper
will support wind producers and system operators [1] in the
choice of the most suitable model for their needs, in light of
the opening of the capacity market to the not programmable
renewable energies [39].

AModeling Pipeline for WPF

This section details the main steps of a pipeline for designing
and assessing a WPF model from observed data: data filtering
of raw data, feature engineering to enhance the information
of the extracted signal, data embedding to enable the
adoption of supervised learning models, feature selection to
reduce dimensionality and resampling to carry out a robust
performance analysis on a large ensemble of cases (Fig. 1).

Filtering of Raw Data

The raw signals collected in a wind farm are typically
the output of a Supervisory Control And Data Acqui-
sition (SCADA) system that returns series with a time
resolution of 10 minutes. This system equips all wind
generators/anemometers of the wind farm and supplies
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Fig. 1 Flow chart of the proposed pipeline

both environmental and mechanical data. All data are radio
broadcast to a central server where a database is con-
tinuously updated. The first data processing consists in
extracting and grouping data according to the source (gener-
ator/anemometer). Though the total amount of data is larger,
in this paper we will limit to power generation, temperature,
measured wind speed/direction of the wind generators and
wind speed/direction of the anemometers.

Feature Engineering

In this step the raw signals are formatted into a matrix
D[N, S], where N and S denote the number of samples
and variables respectively. This matrix can be decomposed
into the predictor submatrix P[N, φ] and target submatrix
R[N, ρ], where φ and ρ stand for the number of predictors

and targets, respectively. This decomposition is supposed to
make easier the feature engineering step, which consists in
augmenting the original dataset with a number of statistics
related to the past behavior of the series.

D = [
R P

] =
⎡

⎢
⎣

⎡

⎢
⎣

r11 . . . r1ρ

... . . .
...

rN1 . . . rNρ

⎤

⎥
⎦

⎡

⎢
⎣

p11 . . . pNφ

... . . .
...

pN1 . . . pNφ

⎤

⎥
⎦

⎤

⎥
⎦ (1)

In particular, we consider here:

– Moving Average: arithmetic mean on the past Q

observations:

rs1,t
= 1

Q

i=Q−1∑

i=0

y(t−i), ∀t ∈ [1, N] (2)
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– Maximum Value: local maximum value for the consid-
ered time windows:

rs2,t
= max

(
y(t), . . . , y(Q−1)

)
, ∀t ∈ [1, N] (3)

– Incremental Ratio of the Moving Average: average
incremental ratio over the time

rs3,t
= 1

Q

⎡

⎣

⎛

⎝ 1

Q

i=Q−1∑

i=0

y(t−i)

⎞

⎠−
⎛

⎝ 1

Q

i=2(Q−1)∑

i=Q

y(t−i)

⎞

⎠

⎤

⎦ ,

∀t ∈ [1, N ]
(4)

– p − quantile: The p-quantile is the value, given a
sortable observation set, for that the probability to have
observations lying below this value is the p%.

The feature creation leads to an increase of the size of
P to [N, Φ], where Φ = (φ + ρcγ ) and c and γ are the
number of lagged time windows and smoothed variables,
respectively.

Embedding Procedure

This step rearranges the sub-matrices P and R in an
embedded input/output form depending on the horizon H

and time lag L.
The outcome is made of the predictor matrix X0 in (5)

and the target Y0 matrix (6) whose dimensions are [N −
L − H, Φ · L] and [N − L − H, H ], respectively. Note that
the increment in size is due to the generation of as many
variables as are the number of the time steps between the
current time sample and the maximum lag for each variable.

(5)

(6)

Once the matrices X0 and Y0 are available, a number V

of training and test sets are defined in order to implement a
rolling window assessment strategy [3].

In particular, for a generic case test v, the matrices X(v)

and Y(v) are used to derive the training matrices X(v)
trn, Y(v)

trn

and the validation matrices X(v)
val , Y

(v)
val , which will be used

later to assess the prediction models.

Feature Selection

Though feature engineering and data embedding generate
useful information for forecasting, they cause a large increase
in data dimension and a consequent number of drawbacks
like: curse of dimensionality, high demand of computational
resources and ill-conditioning in data analysis [28].

Hence, it is recommended to adoption of dimensionality
reduction or features selection techniques [38]. Dimen-
sionality reduction techniques combine original features
to provide a smaller number of features with enhanced
predictive power. A well-known example is the Principal
Component Analysis (PCA) which creates by linear combi-
nation orthogonal variables expected to retain a large part
of the data variance. Feature selection extracts a subset of
variables expected to be as relevant as possible for the pre-
diction target. Plenty of feature selection techniques have
been proposed in literature. Here we will limit to consider an
information-theoretic filter, called minimum Redundancy
Maximum Relevancy (mRMR) [24]. The motivation of this
choice is that this algorithm is a fast and effective way to
select a number of features which are highly informative and
low redundant. mRMR selects the features by maximizing
the average mutual information and minimizing the redun-
dancy according to the following incremental algorithm
[20]:

max
xj ∈X−Sm−1

[
I (xj ; b) − 1

1 − G

∑
xi∈SG−1

I (xi; xj )

]

(7)

where S is the ensemble predictors, xj is the j-th analyzed
predictor, xi is the i-th compared predictor to xj , G

is the number of predictors, and b a generic target.
I (xj ; b) and I (xi; xj ) are estimated by computing the
mutual information between the corresponding couples of
variables.

In particular, in this work mRMR has been chosen
as technique to reduce the cardinality of the embedded
predictor matrix after preliminary tests, which have
highlighted its greater effectiveness respect with the PCA.

Model Generation

The number of predictive models proposed in the data
science literature is huge as shown in Table 1 we will limit
to consider a small number of statistical, ML models and
their combination (Ensemble).
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Table 1 Assessed models

Ad. ANNs - Naı̈ve Ad. Naı̈ve-RF-SVM-GBM

GRUdrop (ANN) Ad. SVM-Naı̈ve

GRU (ANN) Ad. GBM-Naı̈ve

Simple ANN Ad. RF-Naı̈ve

Exponential Smoothing Av. SVM-GBM

SVM Av. SVM-Naı̈ve

Av. GBM-RF GBM

Av. Naı̈ve-RF RF

Av. GBM-Naive

Statistical Models

We consider two types of statistical models: (i) the Naive
model returning a simple moving average mean on the
past observed values and (ii) the Holt Winter Exponential
Smoothing [22], which has proved its effectiveness in
predicting complex time series [19] by decomposing the
signal in trend, seasonal and random components in order to
estimate independently the evolution of each of them.

Machine Learning Models

The input/output representation of the data allows the
adoption of generic supervised learning algorithms. Here
we will focus on Random Forest (RF), Gradient Boosting
Machine (GBM), Support Vector Machines (SVM) and
Artificial Neural Networks (ANNs).

RF relies on the idea that many low-correlated and
unbiased weak predictors, which are characterized by not
much great variance, can improve the prediction accuracy
respect with the employment of a single predictor [30]. RF
operates by producing many weak models (regression trees)
from data subsets having different samples and features,
which are extracted randomly from original training set in
order to reduce the correlation between the weak predictors,
where the final prediction will be the average between all
weak predictions.

GBM, on the other hand, creates an ensemble by iterative
addiction of weak predictors (regression trees), each one
learning on the residuals from the previous ensemble [14].

Differently, SVM for regression works differently from
the previous methods because it relies on minimizing
a loss function by considering the only samples lying
outside a tolerance bound, neglecting the others. Because
the SVM optimization problem basically finds hyper-plane
coefficients that satisfy a set of constraints, it performs a
linear regression. In order to apply it to data with non-
linear dependencies, a kernel function [6] is used to map the
original space onto a higher dimensional space where the
data is linearly separable.

When the relation on data are strong nonlinear ANN may
be effective in predicting complex time series evolution.
Particularly, many Recurrent Neural Networks have been
compared here, where each of them has been equipped
with different architecture. In particular, Long Short-Term
Memory (LSTM) has been widely applied for wind and
solar forecasting [31], whereas Gated Recurrent Units
(GRU) units represents an evolution of LSTM to catch
dependencies at different timescales [9].

Furthermore, the adoption of the dropout technique to
GRU should avoid over-fitting issue, by increasing the
forecasting accuracy as shown in [40].

Ensemble Forecasting

Many previous models such as RF and GBM rely on the
ensemble forecasting concept, where many low-correlated
weak predictors are trained, providing the final prediction
by aggregating all model outputs. Now, the same idea is
applied at a higher level by combining the predictions of
different models in a certain way, producing an ensemble
averaging [34].

In particular, the ensemble forecast uses many forecast-
ing models operating in parallel, with the aim at improving
the forecasting accuracy respect to the performance supplied
by each single method.

This because each forecasting model operates on differ-
ent base assumptions, performing better/worse depending
on many factors, such as the differences between charac-
teristic of training and validation data sets, respect with the
others causing a local change in performance over the time.

Therefore, the aggregation method plays a crucial role
in combining the single predictors output where the most
employed are the simple averaging (Av) and the adaptive
weighted averaging (Ad). The latter considers dynamical
weights that are updated regularly over the time, giving
greater weight to models with lower RMSE as shown by (8).

x
(t)
j =

(
RMSE(t)

j

)−1
( K∑

k=1

(
RMSE(t)

k

)−1
)−1

, xj ∈ [0, 1]

(8)

where K is the number of considered machine learning
models, whereas (9) shows how the joint forecasting is
computed, where fk is k-th model of the forecasting
ensemble.

ŷ(t+i) =
K∑

k=1

fk(t+i)x
(t)
k , ∀i ∈ [1, H ] (9)
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Table 2 Metrics

metric equation domain

MSE
1

A

∑Z
a=1

(
ŷa − ya

)2 [0, ∞]
MAE

1

A

∑A
a=1

∣
∣
∣∣ŷa − ya

∣
∣
∣∣ [0, ∞]

R2 1 − RSS

TSS
[0, 1]

RSS = ∑A
a=1

(
ŷa − ya

)2

TSS = ∑A
a=1 (ya − ȳ)2

nMSE
MSE

σ
[0, ∞]

A is the number of samples in validation dataset

σ is the variance of validation dataset

Model Validation

The choice of the most suitable metric ([37]) to assess
wind power forecasting is still an open issue [45]. Here
we adopt the metrics detailed in Table 2 i.e. Mean Square
Error (MSE), Mean Absolute Error (MAE) and R squared
(R2) [7].

In order to robustly assess the alternative WPF models, a
large number of cases (V = 17) has been considered. Each
case is based on different pairs of training and validation
sets [23], generated by application of the rolling window
technique [41].

The aggregation of the resulting accuracy measures
enables a thorough assessment of each WPF model by
means of the Friedman’s test [15], a non-parametric
randomized block analysis of variance whose null hypoth-
esis H0 is that the error distributions are the same across
repeated measures. 1 If the test rejects the H0 hypothesis, a
post-hoc analysis is run to find which pairs of methods are
significantly different [36]. The analysis is based on Tukey’s
test and supplies an upper diagonal square matrix with the
column element sorted by their rank.

Eventually, once the Friedman’s test with post-hoc
analysis has returned a rank of the different competing
models, we may visualize the performance of all the models
by means of boxplot/heat-map graphs.

Case Study

This study applies the methodology discussed in Section 2
to a wind farm, located in southern Italy on the ridge of

1Note that such test differs from the conventional Analysis of variance
(ANOVA) since it does not rely on any assumption of normal
distribution and equal variances of residual.

Table 3 Matrices X0,Y0, main features at changing of forecasting
horizon

forecasting horizon other parameters

hour H (number of step ahead) L(H) Lag φ ρ c Φ(H)

1 6 6 7 1 4 186

2 12 12 7 1 4 372

3 18 18 7 1 4 558

4 24 24 7 1 4 744

5 30 30 7 1 4 930

6 36 36 7 1 4 1116

Apennines chain, composed of 15 wind generators and with
an installed power of 30 MW. The forecasting concerns
multiple time horizons (ranging from 1 to 6 hours).

The raw data includes wind speeds/directions at different
heights, supplied by two anemometer spots, and the
generated power, with a time resolution of 10 minutes
over a period of 2 years. As shown in Fig. 2, the terrain
is characterized by ridge steeps and complex orography,
which causes chaotic behavior (notably fast changes in
wind direction, strong shears, turbulence, sudden gusts).
The impact of site morphology is confirmed by the spatial
wind distribution shown by the wind roses of the two
anemometers, where dominant winds come from south-
west and north for anemometer 1 and 2, respectively. This
setting increases the difficulties in relating anemometers
measures with the wind farm power generation, requiring
then the adoption of complex models to return an accurate
forecasting.

Raw data have been processed according to the procedure
of Section 2 then generating V = 17 experimental cases,
whose features are shown in Table 3. Each test case is made
of 25000 samples partitioned according a 5 : 1 ratio into
training and validation data-sets. Note that the training sets
are processed by mRMR (Section 2) which returns the 15
most relevant variables.

Experimental Results

The assessment results in terms of all the considered metrics
and horizons are illustrated by a number of heat-maps
(Figs. 3, 4 and 5) and boxplots (Figs. 4, 6 and 7). The
heat-maps illustrate the ranking of WPF models according
to the Friedman’s test where the most accurate models are
situated at the bottom-left side. Each cell of the heat-map
takes two possible colors: grey if the WPF model in the row
is significantly worse than the one in the column, orange
otherwise. Such representation allows to visualize clusters
of equivalent predictors (Figs. 3, 4 and 5).

To understand well the figures, it is necessary to comply
to the following instructions: given a forecasting horizon
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H , the reader should enter in the figure from downside by
selecting a model and move from bottom to up until the
diagonal cell, thus move perpendicularly from left to right
over the row. All the orange elements are not significantly
different models over this trip. For example, in case
H = 1 h GBM lies in 6th position in according to
Friedman’s test. Thus from bottom to the diagonal element
there are two orange cells over the selected column (the
diagonal element is always excluded from the count because
it corresponds to the considered model itself), which means
that the previous two models (Av-GBM-RF and Ad-RF-
Naive) in the rank are not significantly different to GBM.
Then, from the diagonal element, there are three orange
cells by moving from left to right, which means that the
successive three models in the rank (Av-GBM-Naive, Av-
SVM-GBM and RF) are not significantly equal to GBM.

The information provided by the heat-maps, based on the
accuracy ranks, are coupled with that provided by box-plots,

which show the metric distribution for each considered WPF
model and forecasting horizon. In this way, the decision
maker will have a complete summary about the ranks
and performance dispersion for each method leading to
many interesting considerations made on the basis of the
experimental results:

– the method which appears more consistently on the
top ranking positions is the adaptive ensemble model
combining RF, SVM, GBM and Naı̈ve.

– Exponential Smoothing has the highest accuracy only
for H = 1 h forecasting horizon whereas for increasing
H its performances deteriorates dramatically in terms
of MSE, which tends to penalize greater the large
prediction error respect with MAE.

– the ensemble forecasting of ANNs plus Naı̈ve tends to
have higher ranking at increasing of forecasting horizon
H .

Fig. 2 Wind farm satellite view
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– The influence of the system physics becomes dominant
in H = 5 and H = 6, causing a general reduction of
accuracy in all the WPF models. Indeed, the spreads

become much wider and there is no more a single model
outperforming the rest.

Fig. 3 Visualization of Friedman’s test with Post-hoc Analysis in
terms of MSE. The best models are on the leftmost/lower side. The ele-
ments placed on the left side are placed in a specular manner to those

on the downside for each insert. An orange case means that the models
on the respective row/column are not significantly different
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Fig. 4 Visualization of model performance distribution in terms of nMSE. The models are ordered by considering the rank supplied by the
Friedman’s test

On the basis of the previous considerations, our
recommendation would be the adoption of ensemble
forecasting, which is able to guarantee both accuracy and
stability over different forecasting settings.

On-going Experimental Activities

The proposed approach has been developed to predict
the overall wind farm power generation. Anyway, in the
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preliminary design phase, also a wind power forecasting
on the single wind generator has been tested, with worse
results. This phase had the merit to highlighting the need
for enhancing the condition monitoring of the generator

asset, improving the level of confidence in the analysis of
the operation data. In particular, the comparison between
the output of the wind turbine generator models and the
measured data allowed detecting several critical operation

Fig. 5 Visualization of Friedman’s test with Post-hoc Analysis in
terms of MAE. The best models are on the leftmost/lower side. The
elements placed on the left side are placed in a specular manner

to those on the downside for each insert. An orange case means
that the models on the respective row/column are not significantly
different
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states, especially in analyzing the wind - power output
with a 10-min time resolution. Indeed, as shown by
Fig. 8, the active power spread for each wind speed bin
is significant, especially for low values. This is caused
by the effect of generator inertia, which smooths the fast

transients in wind gusts as shown in the lower side of
the figure. Actually, the overall combined effect of inertia,
blade/wind peripheral rotor speed and yaw controls is the
main factor inducing this power spreading [47]. Further,
critical patterns include the deflections from the maximum

Fig. 6 Visualization of model performance distribution in terms of MAE. The models are ordered by considering the rank supplied by the
Friedman’s test
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power operation point for the wind speeds greater than
the nominal value (rightmost side), where several data
clusters can be clearly identified. These derated states
are activated in order to satisfy the power curtailment
orders imposed by the transmission system operator in the

presence of power system congestion. Any other deviation
between the predicted and the measured data is a clear
indication of a system anomaly, which could be induced by
wrong control settings, performance deterioration, incipient
faults etc. A data-driven methodology aimed at classifying

Fig. 7 Visualization of model performance distribution in terms ofR2. The models are ordered by considering the rank supplied by the Friedman’s test
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Fig. 8 Comparison between WTG experimental measures (“ptrue”)
and manufacturer curve (“pMC”)

these events are currently under development by the
Authors.

Conclusions

The growing wind power production is introducing uncer-
tainty in power grid operations with negative consequences
for both system operators and wind producers because of
the stochastic and intermittent nature of the wind. This issue
motivates the design of effective wind power forecasting mod-
els to mitigate the power generation uncertainty. Nevertheless
a thorough procedure for comparing and assessing existing
approaches is still lacking in literature on wind forecasting.

This paper proposed a methodology for the robust assess-
ment of different types of short-term WPF models over multi-
ple horizons, which is based on data resampling and statistical
tests.

The study highlighted that ensemble forecasting of
statistical and machine learning models dominates in terms
of accuracy ranks, by supplying additional robustness with
respect to single approaches.

In particular, for horizons longer than two hours, such
technique is able to outperform exponential smoothing a
well-known state-of-the-art statistical approach.

As far as the generalization of these results is concerned,
it is important to remark that the pipeline and the
features selection technique have been designed to process
heterogeneous data sets, characterized by different size
and complexity. Moreover, additional time series, i.e.
temperature and pressure profiles, can be integrated in the
input data-set and processed by the forecasting algorithms,

if their contribution is considered relevant by the feature
selection technique.

Future research will focus on the improvement the
performance of ensemble forecasting models. This kind
of models will be adapted to supply wind power forecast
on large area, trying to catch correlation between the
several wind power plants by supplying multivariate and
hierarchical forecast over the time.
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