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A B S T R A C T

Time series forecasting deals with the prediction of future values of time-dependent quanti-
ties (e.g. stock price, energy load, city traffic) on the basis of their historical observations. In
its simplest form, forecasting concerns a single variable (i. e., univariate problem) and deals
with the prediction of a single future value (i. e., one-step-ahead).

Existing studies in the literature focused on extending the univariate time series frame-
work to address multiple future predictions (also called multiple-step-ahead) and multiple
variables (multivariate approaches) accounting for their interdependencies. However, most
of the approaches deal either with the multiple-step-ahead aspect or the multivariate one,
rarely with both. Moreover state-of-the-art multivariate forecasting methods are restricted
to low dimensional problems, linear dependencies among the values and short forecasting
horizons.

The recent technological advances (notably the Big Data revolution) are instead shifting
the focus to problems characterized by a large number of variables, non-linear dependencies
and long forecasting horizons. Those forecasting tasks are recently more and more addressed
with a representation learning approach, by feeding the data into large scale deep neural
networks and letting the model learn the most suitable data representation for the task
at hand. This approach, despite its success and effectiveness, often requires considerable
computational power, intensive model calibration and lacks interpretability of the learned
model.

The motivation of this thesis is that the potential of more interpretable approaches
to multi-variate and multi-step-ahead tasks has not been sufficiently explored and that
the use of complex neural methods is often neither necessary nor advantageous. In this
perspective we explore two multivariate and multiple-step-ahead forecasting strategies
based on dimensionality reduction :

• The first strategy, called Dynamic Factor Machine Learning, is a machine learning
extension of a famous technique in econometrics: it transforms the original high-
dimension multivariate forecasting problem by extracting first a (small) set of latent
variables (also called factors) and forecasting them independently in a multi-step-ahead
yet univariate manner. Once the multi-step-ahead forecast of factors is computed, the
predictions are transformed back to the original space.

• The second strategy, called Selective Multivariate to Univariate Reduction through
Feature Engineering and Selection, addresses the dimensionality issue in the original
space and deals with the combinatorial explosion of possible spatial and temporal
dependencies by feature selection. The resulting strategies combines expert-based fea-
ture engineering, effective feature selection strategies (based on filters), and ensembles
of simple models in order to develop a set of computationally inexpensive yet effective
models.

The thesis is structured as follows. After the introduction, we present a description of the
fundamentals of time series analysis and a review of the state-of-the-art in the domain of
multivariate, multiple-step-ahead forecasting. Then, we provide a theoretical description of
the two original contributions, along with their positioning in the current scientific literature.
The final part of thesis is devoted to their empirical assessment on several synthetic and real
data benchmarks (notably from the domain of finance, traffic and wind forecasting) and
discusses their strengths and weaknesses.
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The experimental results show that the proposed strategies are a promising alternative
to state-of-the-art models, overcoming their limitations in terms of problem size (in case of
statistical models) and interpretability (in case of large scale black-box machine learning
models, such as Deep Learning techniques).

Moreover, the findings show a potential for implementation of these strategies on large-
scale (> 102 variables and > 103 samples) real forecasting tasks, providing competitive
results both in terms of computational efficiency and forecasting accuracy with respect to
state-of-the-art and deep learning strategies.
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A B S T R A C T

La prévision des séries temporelles consiste à prédire les valeurs futures de certaines
quantités dépendantes du temps (par exemple, le prix des cours boursiers, la production
énergétique, le trafic urbain) sur base de l’historique de leurs observations. Dans la forme
plus simple du problème, la prévision ne concerne qu’une seule variable (problème univarié)
et produit la prédiction d’une seule valeur future (one-step-ahead).

Les études existantes dans la littérature se sont concentrées sur l’extension du cadre des
séries temporelles univariées pour traiter des prédictions de plusieurs variables (approches
multivariées), à plusieurs étapes dans le futur (également appelées multiple-step-ahead), en
tenant compte de leurs interdépendances. Cependant, la plupart des approches traitent soit
l’aspect "multiple-step-ahead", soit l’aspect "multivarié", mais rarement les deux. En outre,
les méthodes de prévision multivariées les plus récentes se sont limitées à des problèmes de
dimensionalité réduite, avec dépendances linéaires entre les valeurs et un court horizon de
prévision.

Les récentes avancées technologiques (notamment la révolution du Big Data) déplacent
l’attention vers des problèmes caractérisés par un plus grand nombre de variables, des
dépendances non linéaires et des longs horizons de prédiction. Ces tâches de prédiction sont
de plus en plus abordées avec une approche d’apprentissage de représentation, en alimentant
les données dans des réseaux neuronaux profonds à grande échelle et en laissant le modèle
apprendre la représentation des données la plus appropriée pour la tâche à accomplir. Cette
approche, malgré son succès et son efficacité, nécessite souvent une puissance de calcul
considérable, une calibration intensive du modèle et un manque d’interprétabilité du modèle
appris.

La motivation de cette thèse est que le potentiel d’approches plus interprétables pour les
tâches multi-variables et multi-étapes n’a pas été suffisamment exploré et que l’utilisation
de méthodes neuronales complexes n’est souvent ni nécessaire ni avantageuse. Dans cette
perspective, nous explorons deux stratégies de prédiction à plusieurs variables et à plusieurs
étapes basées sur la réduction de la dimensionnalité :

• La première stratégie, appelée Dynamic Factor Machine Learning, est une extension de
l’apprentissage automatique d’une technique célèbre en économétrie : elle transforme
le problème original de prévision multivariée à haute dimension en extrayant d’abord
un (petit) ensemble de variables latentes (également appelées facteurs) et en les
prévoyant indépendamment de manière univariée mais à plusieurs étapes dans le
futur. Une fois que la prévision multi-étapes des facteurs est calculée, les prédictions
sont retransformées dans l’espace original.

• La deuxième stratégie, appelée Selective Multivariate to Univariate Reduction through
Feature Engineering and Selection, aborde le problème de la dimensionnalité dans
l’espace original et traite l’explosion combinatoire des dépendances spatiales et tem-
porelles possibles par la sélection de variables. Les stratégies qui en résultent combinent
un processus de feature engineering basée sur la connaissance des experts dans le
domaine, des stratégies efficaces de sélection des caractéristiques (basées sur des filtres)
et des ensembles de modèles simples afin de développer un ensemble de modèles
efficaces mais peu coûteux en termes de calcul.

La thèse est structurée comme suit. Après l’introduction, nous présentons une description
des principes fondamentaux de l’analyse des séries temporelles et une revue de l’état de
l’art dans le domaine de la prévision multivariée à plusieurs étapes dans le futur. Ensuite,
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nous fournissons une description théorique des deux contributions originales, ainsi que leur
positionnement dans la littérature scientifique actuelle. La dernière partie de la thèse est
consacrée à leur évaluation empirique sur plusieurs jeux de données synthétiques et réelles
(notamment dans le domaine de la finance, du trafic et de la prédiction de la production
d’énergie éolienne) et discute de leurs forces et faiblesses.

Les résultats expérimentaux montrent que les stratégies proposées constituent une alter-
native prometteuse aux modèles de l’état de l’art, en surmontant leurs limites en termes de
taille du problème (dans le cas des modèles statistiques) et d’interprétabilité (dans le cas
des modèles d’apprentissage automatique de type boîte noire à grande échelle, tels que les
techniques d’apprentissage profond).

En outre, les résultats montrent un potentiel pour la mise en œuvre de ces stratégies sur
des tâches de prédiction réelles à très grande échelle (> 102 variables et > 103 échantillons),
fournissant des résultats compétitifs à la fois en termes d’efficacité de calcul et de précision
de la prévision par rapport aux stratégies de pointe et d’apprentissage profond.
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Part I

O V E RV I E W

"If I have seen further it is by standing on the shoulders of Giants."

– Isaac Newton
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1
I N T R O D U C T I O N

1.1 time series forecasting and machine learning

Forecasting, in its simplest form, deals with the prediction of a given quantity of interest
in the future, given its available historical data. Forecasts are employed in several scientific
and applied domains, ranging from finance, where they are used to support investors in
selecting the most profitable (or less risky) investment, to the energy sector, in order to
support transmission operators to control the contribution of renewable energy production
(Figure 1.1). These are only a few of the numerous examples that highlight the importance
of forecasting as a tool to support decision-making and perform effective planning.
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Figure 1.1: Evolution of the cumulative power generated by wind farms in Europe in MW - Source:
Eurostat except 2017 (EurObserv’ER)

According to the problem at hand, one could be interested in forecasting the immediate
next value in the future (one-step-ahead forecasting) or be concerned with the estimation
of a sequence of future values (multi-step-ahead forecasting). In addition, forecasting can
focus on a single quantity (univariate forecasting), as well as several quantities at once
(multivariate forecasting), in order to exploit their cross-dependencies.

This thesis will address the problem of multivariate forecasting, with the increased
difficulty of focusing on multiple-step-ahead predictions. The problem of multivariate
forecasting has been widely studied in econometrics (Tsay, 2000) since the 1950s, but
researchers mostly focused on linear approaches to problems with a reduced number
of variables and short forecasting horizons (rarely bigger than one). Example of such
approaches are the Vector Auto-Regressive (VAR) model (Lütkepohl, 2005), the multivariate
extension of the well-known univariate Auto-Regressive Integrated Moving Average (ARIMA)
model (Box et al., 2015) and Vector Error Correction models (Engle and Granger, 1987).
Larger dimensional settings have subsequently been addressed by Dynamic Factor Model
(DFM) models (Escribano, Peña, and Ruiz, 2021), where a dimensionality reduction process
is used to cope with the increased dimensionality before performing a linear forecasting
approach.

3
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4 introduction

Nowadays, technological advancements such as Internet of Things (IoT) and the Big
Data revolution are increasing data availability (Figure 1.2) and changing the nature of the
multivariate forecasting problems by introducing large dimensional streams of nonlinear
time series, potentially with strong spatio-temporal dependencies, and by requiring longer
prediction horizons. These factors are becoming increasingly important in a growing number
of scientific and applied domains, going from environmental science, meteorology, industrial
processes to electric grids (Galicia et al., 2017; Perez-Chacon et al., 2016) and finance.

Figure 1.2: Evolution of the worldwide data production across the years since 2010, with projections
up to 2025.

As linear econometrics models began to show their limitation in scaling up to larger
dimensionality and longer horizons, machine learning based techniques (Friedman, Hastie,
Tibshirani, et al., 2001) have started to be considered as alternative solutions to the problem.
Machine learning techniques, also called data-driven (Januschowski et al., 2020), are a
category of nonlinear and nonparametric models (i. e., with reduced assumptions on the
statistical properties of the data generating process), which estimate the stochastic depen-
dency between historical and to-be-predicted data based only on the available data samples.
Their black-box approach to forecasting, together with a widespread availability of model
implementations (e. g., Scikit-learn by Pedregosa et al., 2011, caret by Kuhn, 2008 for
general-purpose machine learning, Keras by Chollet et al., 2015, PyTorch by Paszke et al.,
2019 for Deep Learning (DL), among others) simplified the adoption of machine learning
models by an increasing number of practitioners.

At the same time, the rise of forecasting competitions (e. g., M4, M5 and the upcoming M6)
and the corresponding hosting platforms (e. g., Kaggle, DrivenData, Zindi, among others),
allowed the practitioners to easily access real datasets and to benchmark their models
against each other, further improving the performances of machine learning techniques. As
shown by the results of the M4 (Makridakis, Spiliotis, and Assimakopoulos, 2020b) and
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1.2 motivation and aims 5

M5 (Makridakis, Spiliotis, and Assimakopoulos, 2020a) forecasting competitions, machine
learning techniques are becoming more accurate than statistical ones over a variety of
multivariate forecasting tasks.

However, the two competitions gave different indications about the choice of the ma-
chine learning technique: the winning method of the M4 competition (Smyl, 2020) relies
on a deep learning approach, whereas the top-ranked method in the M5 competitions
employs a forecast combination of gradient boosting techniques. In particular, deep learning
models, a sub-field of machine learning concerned with the development of forecasting
models inspired by the human neural system (i. e., deep, interconnected networks of simple
processing units), has become more and more popular (Figure 1.3) for the forecasting of
multivariate time series (Hewamalage, Bergmeir, and Bandara, 2021; Torres et al., 2021),
given its capability to learn from a large amount of data, without any prior assumptions
on the corresponding data generating process, and easily re-use the model to produce
multiple-step-ahead forecasts, usually with good forecasting accuracy. Nevertheless, this
flexibility comes at the price of a computationally intensive training process, a need for
extensive parameter tuning as well as a lack of interpretability of the learned model. Even
though interpretability, computational cost and ease-of-use are particularly relevant aspects
for practitioners of time series forecasting, especially in an industrial setting, those aspects
are often neglected in the scientific literature.
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Figure 1.3: Number of published articles concerning multivariate forecasting with different forecast-
ing techniques - Source: Scopus Queries (TITLE-ABS-KEY(multivariate forecasting

X)) with X ∈ {Neural,VAR}

Given the state-of-the art of multivariate, multi-step-ahead forecasting, we decided to
orient our research towards machine learning approaches, with a particular attention to the
aforementioned aspects of interest for forecasting practitioners.

1.2 motivation and aims

This thesis will address the problem of multivariate and multiple-step-ahead forecasting,
currently regarded as the hardest problem in the field, with a particular focus on machine
learning solutions. In fact, if we model the prediction task as an autoregressive process
(i. e., in which the future can be expressed as a function of the past), such task presents
several formidable challenges for any learning machine, notably the large dimensionality of
the input and the output data, cross-sectional and temporal dependencies (inducing both
non-linear multivariate dependencies in the inputs and a non-linear structure in the outputs)
and last but not least the risk of error propagation across several forecasting horizons.
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For these reasons, even though several real-life forecasting problems (e. g., wind power,
mobility, and stock market forecasting) are inherently multivariate, they are often approached
as a set of independent univariate problems. This approach allows to tackle an easier
problem at the cost of ignoring the cross-dependencies among the series and potentially
losing informative content for the prediction. When we consider multivariate approaches,
the majority of proposed forecasting techniques belongs either to the linear family or to the
DL-based techniques.

On one hand, linear statistical approaches (such as the VAR family - Section 2.3.4.3) are
characterized by an easily interpretable model (due to their linear structure). Their structure
allows for closed-form solutions and detailed modeling of the interdependencies, which
limits their ability to scale up when the dimensionality of the problem increases and is often
limited to short forecasting horizons.

On the other hand, large scale DL models (such as Recurrent Neural Network (RNN)
and Convolutional Neural Network (CNN) deep networks - Section 2.3.5.1) allow to easily
scale up the model when the size of the problem increases and longer forecasting horizons
are required, but lack in interpretability. Moreover, their flexibility and the popularity of
ready-to-use frameworks led to a pervasive adoption in the field of forecasting. Given their
success on several tasks, practitioners tend to assume an a priori superiority of the modeling
capabilities of the DL approaches. This assumption, in combination with the ease-of-use
and black-box approach to modeling, often results in employing this family of techniques
without a critical assessment of their capabilities. Limited attention is given to understanding
the actual causes of their good forecasting performance and new models are often created by
recombining or extending existing techniques, resulting in a continuous increase in model
complexity (Figure 1.4). Last but not least, their assessment is often lacking a comparison
against more conventional strategies.

Figure 1.4: Forecasting error of Deep Learning technique as a function of the number of floating
point operations and corresponding CO2 emissions. The white dots represent model
sizes and performances of state-of-the-art models, with the corresponding years, while
the black dots indicates potential future scenarios. - Source: (Deep Learning’s Diminishing
Returns 2021)
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1.2 motivation and aims 7

The motivation for this thesis comes from the idea of building a best-of-both-worlds
solution, combining scalability and interpretability, and exploring the potential of conven-
tional techniques in the multivariate multiple-step-ahead forecasting. In order to do so,
we propose two modular forecasting strategies based on machine learning procedures,
tailored for multiple-step-ahead forecasting. To the best of our knowledge, no existing work
addresses both the multivariate and the multiple-step-ahead issues. Most of the published
works focus on a single subproblem: for instance: (Kirchgassner and Wolters, 2007) studies
the problem of one-step-ahead prediction of linear multivariate time series, (Ben Taieb
et al., 2012; Bontempi and Ben Taieb, 2011) address the multiple-step-ahead forecasting of a
univariate time series, while recent textbooks (Tsay, 2014) consider only multivariate, linear
one-step-ahead approaches.

Our first strategy focus on large dimensionality problems (n > 102 variables and N > 103

samples), where a reduction of the dimensionality is required in order to reduce noise in
the data, as well as to improve the interpretability of the considered models. The proposed
strategy, named Dynamic Factor Machine Learner (DFML) (Figure 1.5), inspired by the DFM

literature (Escribano, Peña, and Ruiz, 2021), explores the predictive capabilities of both
linear and non-linear techniques for both dimensionality reduction and forecasting in this
large scale setting. DFML still maintains the key assumption of DFM models: the available
time series data are multivariate observation of some latent temporal variable (e. g., stock
market intrisic behaviour or atmospheric weather), while relaxing some modeling constraints
imposed to estimate conventional DFM models. The proposed strategy is supported by an
in-depth assessment over several real-world datasets, allowing the definition of guidelines
for tuning the most relevant parameters (i. e., the number of dynamic factors, the choice of
dimensionality reduction and forecasting technique, and the multi-step-ahead strategy).
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Dimension

reduction

n →
q(<< n)
dimensions

Z[i]
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Z[q]

Forecasti

Forecast1
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Ẑ[i]

Ẑ[1]

Ẑ[q]

Dimension

increase

q → n
dimensions

Ŷ[i]

Ŷ[1]

Ŷ[n]

Figure 1.5: Overview of the DFML strategy for multivariate time series forecasting.

The assessment of the DFML strategy on additional datasets highlighted a decrease in
performance when the problem size is reduced (n ∼ 30) and there is little evidence of latent
structure in the data, leading us to rethink the approach for smaller problems, while still
retaining the interpretability of the previous strategy. This led to the development of the
second strategy, named Selective Multivariate to Univariate Reduction through Feature
Engineering and Selection (SMURF-ES) (Figure 1.6), based on a process of feature engineering
(in order to maximize the informative content for the prediction) and selection (to reduce
the computational complexity and only retain the relevant variables), followed by a forecast
combination of both statistical and machine learning techniques.

Even though this approach would have been computationally prohibitive on large-scale
datasets, here, the reduced problem size allows the execution of the complete pipeline of
feature engineering, selection, model fitting (of multiple models) and combination, while still
maintaining a reduced complexity. Two implementations of the strategy, employing different
feature engineering and forecast combination techniques, are proposed and assessed on
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Figure 1.6: Overview of the SMURF-ES strategy for multivariate time series forecasting. cFE ∗ n and
cFS ∗ n represent the number of variables after feature engineering and feature selection,
respectively.

real-life datasets. An additional contribution is represented by the introduction of a statistical
analysis of the spatio-temporal distribution of the forecast error. This procedure aims to
improve the interpretability of the results, with a particular focus on the detection of
inconsistent forecasting performances.

Overall, the aim of this thesis is twofold. On one hand, we explore a family of solutions
oriented to real-life practical applications, based on traditional machine learning proce-
dures, a family of approaches often neglected in the literature, in favor of either statistical
techniques, or DL-based solutions. On the other hand, we employ statistical analysis to char-
acterize which components of our forecasting strategies are beneficial for a good predictive
performance.

1.3 thesis contributions

To summarize, the main contributions of this manuscript are:

• An overview of the state-of-the-art of the forecasting literature for multivariate prob-
lems (Chapter 2 - Sections 2.3.4 and 2.3.5).

• The formalization of the multivariate and multi-step-ahead forecasting problem (Chap-
ter 3).

• The design of two novel forecasting multivariate and multi-step-ahead strategies: DFML

and SMURF-ES (Chapter 3), based on traditional machine learning approaches.

• The empirical assessment of the DFML (Chapter 4) and SMURF-ES (Chapter 5) strategies
on several real-life challenging forecasting tasks (i. e., wind power forecasting) against
state-of-the-art approaches from both the statistical and DL literature.

• The design of model assessment procedures based on the bias-variance principle, to
assess the spatial distribution of multivariate forecasting errors (Chapter 5).

1.4 activities summary

The following publications have been authored/co-authored during the fulfillment of the
requirements for the Doctor of Philosophy degree. The publications are presented according
to the chapter in which they occur.
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1.4.1 Publications

• Chapter 4:

– Gianluca Bontempi, Yann-Aël Le Borgne, and Jacopo De Stefani (2017). “A Dy-
namic Factor Machine Learning Method for Multi-Variate and Multi-Step-Ahead
Forecasting.” In: Proceedings of DSAA 2017, the 4th IEEE International Conference on
Data Science and Advanced Analytics 2017

– Jacopo De Stefani, Yann-Aël Le Borgne, Olivier Caelen, Dalila Hattab, and Gian-
luca Bontempi (Aug. 31, 2018). “Batch and Incremental Dynamic Factor Machine
Learning for Multivariate and Multi-Step-Ahead Forecasting.” In: International
Journal of Data Science and Analytics. issn: 2364-4168. doi: 10.1007/s41060-018-
0150- x. url: https://doi.org/10.1007/s41060- 018- 0150- x (visited on
09/12/2018)

– Jacopo De Stefani and Gianluca Bontempi (2021b). “Factor-Based Framework for
Multivariate and Multi-Step-Ahead Forecasting of Large Scale Time Series.” In:
Frontiers in Big Data 4, p. 75. issn: 2624-909X. doi: 10.3389/fdata.2021.690267.
url: https://www.frontiersin.org/article/10.3389/fdata.2021.690267
(visited on 09/10/2021)

• Chapter 5

– Fabrizio De Caro, Jacopo De Stefani, Gianluca Bontempi, Alfredo Vaccaro, and
Domenico Villacci (Oct. 18, 2020). “Robust Assessment of Short-Term Wind Power
Forecasting Models on Multiple Time Horizons.” In: Technology and Economics of
Smart Grids and Sustainable Energy 5.1, p. 19. issn: 2199-4706. doi: 10.1007/s40866-
020-00090-8. url: https://doi.org/10.1007/s40866-020-00090-8 (visited on
07/27/2021)

– Fabrizio De Caro, Jacopo De Stefani, Alfredo Vaccaro, and Gianluca Bontempi
(2021). “DAFT-E : Feature-based Multivariate and Multi-step-ahead Wind Power
Forecasting.” In: IEEE Transactions on Sustainable Energy, pp. 1–1. doi: 10.1109/
TSTE.2021.3130949

• Appendix A

– Jacopo De Stefani, Olivier Caelen, Dalila Hattab, and Gianluca Bontempi (n.d.).
“Machine Learning for Multi-Step Ahead Forecasting of Volatility Proxies.” In:
ECML PKDD 2017 Workshops - MIning DAta for financial applicationS (MIDAS 2017)

– Jacopo De Stefani, Olivier Caelen, Dalila Hattab, Yann-Aël Le Borgne, and Gian-
luca Bontempi (2019b). “A Multivariate and Multi-Step Ahead Machine Learning
Approach to Traditional and Cryptocurrencies Volatility Forecasting.” In: ECML
PKDD 2018 Workshops - MIning DAta for financial applicationS (MIDAS 2018). Ed.
by Carlos Alzate, Anna Monreale, Livio Bioglio, Valerio Bitetta, Ilaria Bordino,
Guido Caldarelli, Andrea Ferretti, Riccardo Guidotti, Francesco Gullo, Stefano
Pascolutti, Ruggero G. Pensa, Celine Robardet, and Tiziano Squartini. Lecture
Notes in Computer Science. Cham: Springer International Publishing, pp. 7–22.
isbn: 978-3-030-13463-1. doi: 10.1007/978-3-030-13463-1_1

In addition, the following awards have been granted to the aforementioned publications:

• MIDAS 2017 - Best Paper Award: Jacopo De Stefani, Olivier Caelen, Dalila Hattab,
and Gianluca Bontempi (n.d.). “Machine Learning for Multi-Step Ahead Forecasting
of Volatility Proxies.” In: ECML PKDD 2017 Workshops - MIning DAta for financial
applicationS (MIDAS 2017)
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• DSAA 2017 - Honorable Mention Research Paper Award: Gianluca Bontempi, Yann-
Aël Le Borgne, and Jacopo De Stefani (2017). “A Dynamic Factor Machine Learning
Method for Multi-Variate and Multi-Step-Ahead Forecasting.” In: Proceedings of DSAA
2017, the 4th IEEE International Conference on Data Science and Advanced Analytics 2017

Moreover, an empirical evaluation of the performance of automatic machine learning
techniques versus naive techniques for time series forecasting (albeit on univariate series),
has been performed in:

• Gian Marco Paldino, Jacopo De Stefani, Fabrizio De Caro, and Gianluca Bontempi
(2021). “Does AutoML Outperform Naive Forecasting?” In: Engineering Proceedings
5.1 (1), p. 36. doi: 10.3390/engproc2021005036. url: https://www.mdpi.com/2673-
4591/5/1/36 (visited on 07/27/2021)

Last but not least, one European international patent has been granted on the topics
covered by the dissertation:

Jacopo De Stefani, Gianluca Bontempi, Olivier Caelen, and Dalila Hattab (Jan. 3, 2019a).
“System and Method for Managing Risks in a Process.” Pat. WO2019002582 (A1). Worldline.
Classifications: IPC: G06Q10/04; G06Q50/04, CPC: G06Q10/04 (EP); G06Q50/04 (EP);
Y02P90/30 (EP). url: https://worldwide.espacenet.com/publicationDetails/biblio?
FT=D&date=20190103&DB=&locale=en_EP&CC=WO&NR=2019002582A1&KC=A1&ND=5 (visited on
07/27/2021)

1.4.2 Presentations

The work included in this thesis has been presented at the following international confer-
ences/workshop:

• Benelearn 2017, Eindhoven (the Netherlands), 9-10 June 2017

• MIDAS @ ECML 2017, The 2nd Workshop on MIning DAta for financial applicationS at the
European Conference of Machine Learning, Skopje, Macedonia, 18-22 September 2017

• DSAA 2017: International Conference of Data Science and Advanced Analytics, Tokyo, Japan,
19-21 October 2017

• MIDAS @ ECML 2018, The 3rd Workshop on MIning DAta for financial applicationS at the
European Conference of Machine Learning, Dublin, Ireland, 10-14 September, 2018

• ISF 2020, 40th International Symposium on Forecasting, Virtual, 25-30 October, 2020

Moreover, the topics covered in this thesis have been presented as invited speaker at the
following industrial/academic institutes:

• Workshop Volatility forecasting: From standard to ML-based multistep ahead models
(Equens-Worldline R&D) (08/01/2018 - 31/01/2018)

• Machine Learning for Multi-step Ahead Forecasting of Volatility Proxies, INESC-ID
Research institute, Lisbon, Portugal 02/11/2017

• Methods for multivariate and multi-step-ahead time series forecasting, Scisports,
Amersfoort, Netherlands, 01/11/2018

[ February 19, 2022 at 15:43 – classicthesis v4.6 ]

https://doi.org/10.3390/engproc2021005036
https://www.mdpi.com/2673-4591/5/1/36
https://www.mdpi.com/2673-4591/5/1/36
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190103&DB=&locale=en_EP&CC=WO&NR=2019002582A1&KC=A1&ND=5
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190103&DB=&locale=en_EP&CC=WO&NR=2019002582A1&KC=A1&ND=5


1.4 activities summary 11

1.4.3 Research activities

Part of the work included in this thesis has been developed during an industrial partnership
with Atos-Worldline, and funded through the ULB-Worldline agreement.

In addition I attended the following summer school:

• DeepLearn - International summer school on Deep Learning 2018 – 23-27/07/2018

1.4.4 Software development

The work presented in this thesis has led to the development of multiple R packages,
publicly available on Github:

• UEMTS: Univariate Error Measures for Time Series forecasting - https://www.github.
com/jdestefani/UEMTS, implementing the forecasting error measures analyzed in
(Hyndman and Koehler, 2006).

• MEMTS: Multivariate Error Measures for Time Series forecasting - https://www.github.
com/jdestefani/MEMTS, proving the multivariate extensions of the forecasting error
measures analyzed in (Hyndman and Koehler, 2006), employed for the experimental
assessments in Chapter 4 and 5.

• MM4Benchmark: Multivariate extension of the Benchmarks used for the M4 competition
- https://github.com/jdestefani/MM4Benchmark, implementing the most common
multivariate benchmark, employed in the experimental assessments in Chapter 4 and
5.

• ExtendedDFML: Extended DFML framework - https://www.github.com/jdestefani/
ExtendedDFML, providing an implementation of the DFML strategy with both linear/non-
linear factor estimation and model-driven/data-driven factor forecasting techniques.
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2
B A C K G R O U N D

The research questions addressed in this thesis are related the to problem of time series
forecasting, tackled both with a traditional approach, rooted in statistical analysis and
signal processing (also called model-based), as well as a data-driven approaches from the
machine learning domain. Both machine learning and time series forecasting are large fields
of research in continuous evolution, hence, for the sake of clarity, we will focus only on
the most relevant concepts and techniques that we will employ in our proposed solutions,
presented in the following chapters.

More precisely, we start by introducing the concept of statistical learning and the corre-
sponding learning pipeline, together with a set of general techniques commonly employed
in both the machine learning and time series analysis fields. We continue by delving deep
into the time series forecasting literature, focusing on the adaptations that are required to
tackle the forecasting problem as a learning problem. For a broader introduction to time
series forecasting, we suggests the following references: (Hyndman and Athanasopoulos,
2018), (Petropoulos et al., 2021), (Brockwell et al., 2016), (Terasvirta, Tjostheim, and Granger,
2010) for a more general introduction, and (Lütkepohl, 2005), (Tsay, 2014) for a focus on
multivariate approaches. For machine learning, key references include (Hastie, Tibshirani,
and Friedman, 2009), (James et al., 2013) and (Bontempi, 2013) for statistical learning theory,
and (Aggarwal et al., 2018) for a specific focus on neural-based techniques.

2.1 machine learning procedure

According to (Mitchell, 1997), each machine learning problem can be precisely defined as
the problem of improving some measure of performance P when executing some task T,
through some type of training experience E.

A key phase in the machine learning procedure is represented by the problem formulation,
in which the practitioner formalizes the task T to be analyzed and the performance measure
P to be considered for the problem at hand. With the knowledge of these elements, an
experimental design is defined in order to collect suitable data (i. e., the training experience
E to be fed to the learning machine). Then, the practitioner proceeds with the data collection
step and the eventual preprocessing step, to prepare the available data in a suitable format
for the selected learning machine.

Once this preliminary phase is completed, the learning phase starts by defining a model
(sometimes also called hypothesis) for the task T at hand, followed by a model identification
phase. Generally speaking, this phase involves dividing the available training experience E
into two parts: the first part is used for the identification of the parameters of the model
(the actual learning), while the second is employed to evaluate the performance of the
model according to the selected performance measure P. The learning phase often involves
a feedback loop in which the model is adapted/modified if the performance P on the task
at hand is not sufficiently good.

The structure of a generic machine learning procedure is summarized in Figure 2.1.

13
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Figure 2.1: Structure of a traditional machine learning procedure according to (Bontempi, 2013). The
feedback loop is represented by the dashed line.

2.1.1 Problem formulation

In the problem formulation phase, the practitioner selects a phenomenon to be modeled
(from a specific application domain) and formulates a hypothesis on the existence of an
unknown dependency (i. e., the model) which has to be estimated from experimental data.

Two major problem formulations exist in the domain of machine learning: unsupervised
and supervised machine learning. Here, the notion of supervision is related to the presence
of a human in the learning loop.

In unsupervised learning, there is no human intervention in the loop, and the objective is
to extract patterns of similarities/dissimilarities in the data, whereas supervised learning
assumes the presence of humans labeling the available data.

In supervised learning, it is assumed that a black-box generating process (Breiman, 2001b)
is producing the data, controlled by some input variables x and generating an output
variable y. In this context, the goal of the human is to provide the labels for the output
variable, so that the learning machine can learn the mapping from the input to the output
variable (i. e., the labeling criterion). According to the nature of this variable, the problem
is defined as a classification problem if the output variable y belongs to a discrete, finite
set of classes {C1, · · · , Ck} and as a regression problem if y is a continuous variable. Other
problem formulations exist (e. g., reinforcement learning), but their discussion would be
outside the scope of this thesis.

Given this theoretical framework, the appropriate problem definition for the task at
hand requires domain-specific knowledge, analytical skills, intuition, and experience from
the practitioner. Considering its positioning in the machine learning procedure, a well-
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defined problem (and appropriate data collection for the task at hand) is a crucial aspect
for the success of a machine learning procedure, in practice often more relevant than the
determination of the optimal model for the task at hand.

2.1.2 Experimental design

Along with an accurate problem definition, it is of paramount importance to appropriately
define an experimental protocol to collect the data. In a data-driven domain such as machine
learning, no matter how powerful a learning machine could be, the successive steps in the
pipeline would be ineffective if the data are not informative enough. Especially in the case
of supervised learning (a form of input/output modeling), it is essential that the learning
data is a representative sample of the phenomenon and covers adequately the input space.
Experimental design (Fedorov, 2013) is a discipline concerned with determining the optimal
data collection strategy in order to maximize the performance of the learning process. It
should be noted that, although in theory the problem definition and the experimental design
phase should come before the data collecting, in practice, the practitioner often has no
control over these steps and needs to deal with the available data, rather than following an
optimal design process.

2.1.3 Data collection

Once the experimental design is defined, data collection can be performed in different
ways. For instance, for some well-defined and well-studied problems, a practitioner can
retrieve pre-cleaned, structured datasets (such as educational, academic resources) where
the data have already been treated to ensure a certain level of data quality. On the other
hand, the practitioner might be required to engineer its own data, for example by retrieving
it from publicly accessible sources via automated tools (such as crawlers and scrapers) or by
extracting it from private data sources (e. g., databases).

Although at a first glance the process of data collection might seem quite straightforward
(especially in presence of well-defined problem definitions and experimental designs),
some common problems can be encountered during this step such as missing/inaccurate,
imbalanced and biased data.

The problem of missing or inaccurate data is often related to faults in the processes/de-
vices employed in the data collection process, causing data losses, or inaccuracy in the
corrected values, requiring a further preprocessing step to be correctly dealt with. On the
other hand, even in the absence of missing data, the collected data might be imbalanced
(i. e., one or more states of the output variable could be over-/underrepresented with respect
to the others) or biased (i. e., including implicit biases over one or more input variables)
providing a somewhat distorted representation of the underlying phenomenon. While the
problem of imbalanced data has been extensively studied and can be corrected through
rebalancing techniques (Tantithamthavorn, Hassan, and Matsumoto, 2018), the problem of
detecting biases in data is more complex to tackle and still remains an open research topic
(Turner Lee, 2018).

2.1.4 Data preprocessing

After the collection, a crucial step to improve data quality is the preprocessing step. In the
preprocessing step, the raw collected data is analyzed and transformed in order to improve
the learning performance of the model that will be subsequently fitted on the data. For a
detailed review concerning the different applicable preprocessing techniques, we refer the
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interested reader to (Fan et al., 2021). Here, we will be presenting only the most relevant
techniques for our domain of interest (time series forecasting).

2.1.4.1 Missing value handling

Many learning procedures are unable to natively handle missing values. To cope with this
problem, a practitioner has two main approaches in an operational setting.

If the available data are sufficiently large, missing data can simply be discarded. Con-
versely, if discarding values is not an option (either due to the size of the available data
or to external constraint), the practitioner needs to perform missing value imputation to
replace the missing values with meaningful substitutes. Missing value imputation can have
varying degrees of complexity, ranging from simple imputation of null values to univariate
and multivariate techniques based on the statistical properties of the data.

Note that any imputation technique makes different assumptions about the statistical
properties of the process that caused the missing observation, as well as on the distribution
of replacement values (e. g., normality). One should carefully consider such assumptions
before selecting the most adapted technique for the problem at hand.

2.1.4.2 Feature Selection

The majority of traditional supervised learning algorithms have been designed to deal with
learning tasks in which the dimension of the input space is small and most of the input
variables x are relevant with respect to the output variable y to model. As a consequence,
their learning performance could rapidly degrade when they are employed in problems
with few available data and a huge number of input variables. As such, it has become
increasingly common to employ a feature selection approach in order to remove irrelevant
and unnecessary features.

According to (Bontempi, 2013), the approaches to feature selection can be classified into
three main categories:

• Filter methods: Assessing the relevance of features solely from the data, ignoring the
effects of the selected features subset on the performance of the learning algorithm.

• Wrapper methods: Assessing subsets of variables according to their usefulness to a
given learning technique. Wrapper methods search the most relevant variable subset
using the learning algorithm itself as part of the evaluation function.

• Embedded methods: Variable selection is performed as part of the learning procedure
and is usually specific to given learning machines (for instance model regularization
techniques, e. g., LASSO).

For more information about the empirical performances of the different families of feature
selection techniques, we refer the interested reader to (Bolón-Canedo, Sánchez-Maroño, and
Alonso-Betanzos, 2013).

Among the proposed feature selection techniques, we focus here on two filter techniques:
minimum Redundancy Maximum Relevance (mRMR) and Principal Component Analysis
(PCA). In order to better discuss the implications of the latter on temporal dependent data,
PCA will be discussed in more detail in Section 2.4.1.

mrmr mRMR (Eq. 2.1) (Jain, Duin, and Jianchang Mao, 2000), is an information-theoretic
feature selection technique, extracting a subset of variables expected to be as relevant as
possible for the prediction target, while minimizing the redundance within the subset.
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2.1 machine learning procedure 17

To be more precise, mRMR returns a subset of nS << n relevant features by using a
forward procedure which at the k-th step (k = 1, . . . , nS) selects the least redundant and
most informative predictor variable according to the following formula:

arg max
Xλ∈X−Φk−1

[
I(Xλ, y)− 1

k− 1 ∑
Xψ∈Φk−1

I(Xψ, Xλ)

]
(2.1)

where Φk−1 is the set of k− 1 previously selected variables and I(Xi, y) denotes the mutual
information between the variables Xi and y (De Jay et al., 2013). Note that the mutual
information term can be efficiently estimated by I(x, y) = 1

2 ln(1− ρ(x, y)2) where ρ is the
Pearson correlation coefficient under an assumption of normality. A specific advantage of
mRMR with respect to compression techniques is that it does not transform the original
features, allowing an easier data interpretation. Moreover, the technique has a reduced
computational complexity given its simple heuristic to determine feature relevance. This
makes the procedure particularly efficient even on tasks with a large number of variables
(e. g., bioinformatics - Rego-Fernández, Bolón-Canedo, and Alonso-Betanzos, 2014, Meyer,
Lafitte, and Bontempi, 2008, De Jay et al., 2013).

2.1.4.3 Feature Engineering

Sometimes, when the informative content of the available data is too limited, a process of
feature engineering is performed to construct new features from the available data. Feature
engineering creates n′ = n · cFE new features through the combination of the existing n
variables via both linear and non-linear approaches. Although statistical approaches, based
on the creation of new features through the computation of spatio-temporal statistics on the
available data (Zheng and Casari, 2018), are generally a good solution, designing efficient
feature engineering techniques requires a great amount of domain-specific knowledge,
analytical skills and experience.

2.1.4.4 Data scaling

In presence of input variables having different orders of magnitude, a rescaling process is
required to perform a meaningful learning process.

The rescaling process might aim to maintain the original distribution of the considered
variable while aligning its order of magnitude to those of the other considered variables. In
this case, a min-max scaling (Eq. 2.2) or an interquantile scaling (Eq. 2.3) might be the best
choice.

xminmax =
x−min(x)

max(x)−min(x)
(2.2)

xQ1Q3 =
x−Q1(x)

Q3(x)−Q1(x)
(2.3)

where min(x), max(x), Q1(x) and Q3(x) represent the minimum, maximum, 1st and 3rd

quartile of the x variable, respectively.
On the other hand, if we can assume that the x variable follows a normal distribution, the

z-score rescaling (Eq. 2.4) can be employed in order to ensure that the variable has its mean
equal to zero and unit variance.

xz =
x− µx

σx
(2.4)
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where µx and σx represent the mean and the standard deviation of the x variable, respec-
tively.

2.1.5 Learning phase

In this context, the outcome of the preliminary phase is a structured dataset DN , composed
of N pairs < xi, yi > (also named samples) of observations xi and the corresponding targets
yi. Figure 2.2 represents a dataset in a tabular form. Note that, without loss of generality,
the dataset DN can be represented as a matrix DN(N×(n′+1)).

Moreover, as part of the learning procedure, the dataset will be split into a part dedicated
to the actual learning of the model, named the training set, and a part dedicated to the
validation of the model, named the testing or validation set.

X1 · · · Xi · · · Xn′ y

x11 · · · x1i · · · x1n′ y1

...
...

...
...

...
...

...
...

...
...

...
...

xk1 · · · xki · · · xkn′ yk

...
...

...
...

...
...

xN1 · · · xNi · · · xNn′ yN

Training set Dtrain

Testing set Dtest

Features/Variables Target

Sample

Figure 2.2: Example of generic dataset DN of N samples, n′ = n · cFE variables, resulting of feature
engineering of the original n variables, split into a training set Dtrain of k samples and a
testing set Dtest of N − k samples.

The key assumption of a supervised learning process is that there exists an unknown
stochastic dependency f : Rn′ 7→ R, describing the relation between the input variables x
and the output (target) variable y:

y = f (x) + w (2.5)

where w denotes the noise term, which is supposed to have null mean and constant
variance, and that should account for all the unmeasured contributions to the variability of
y. In addition, we assume that each of the samples composing the observed data DN are
independent and identically distributed, generated from the stochastic process described by
f .

As the dependency f between input and output variable is unknown, we will need to
find an approximation of this dependency whose behavior is as close as possible to the
real dependency f . The approximation is generally referred in the literature as hypothesis or
model h : Rn′ 7→ R, and it is defined in a parametric form h(x, θθθ), with a generic parameter
vector θθθ.

Given this definition, finding the best model for a given task entails two sub-problems:
the definition of a measure of discrepancy between the model and the real dependency, and
the determination of the best model according to this measure.
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2.1 machine learning procedure 19

The measure of discrepancy (also called loss function in the literature) L : R×R 7→ R

compares the true value y produced by f , with the outcome of the parametric model h(x, θθθ).
Given the task at hand, we can define a quantity, named the empirical risk Remp, which
measures the discrepancy between the considered hypothesis h and true dependency f on
the available data DN as the average of the loss function across the N samples:

Remp(h, θθθ) =
1
N

N

∑
i=1

L (yi, h (xi, θθθ)) (2.6)

Note that the empirical risk is a function of both the chosen hypothesis h and the
corresponding parameters θθθ. Hence, determining the best model for a given task requires
the solution of two additional sub-problems: selecting the best family of hypotheses Λ∗

from different hypotheses class Λi ∈ {1, · · · , s} (i. e., the problem of structural identification)
and selecting the best set of parameters θθθN for the selected hypothesis class h(·, θθθ) ∈ Λi
(i. e., the problem of parametric identification).

The problem of parametric identification is tackled first, via a learning algorithm L
that takes as input a given hypothesis h(·, θθθ) and the available dataset DN to produce the
hypothesis with the optimal set of parameters h(·, θθθN). The optimization of the parameters
is done through the Empirical Risk Minimization procedure (Vapnik, 1999), which, given
the hypothesis class Λi, determines the set of parameters θθθN that minimizes the empirical
risk over the dataset DN :

θθθi
N = arg min

θθθ∈Λi
Remp(h, θθθ) (2.7)

After the parametric identification is performed for all the different hypotheses class Λi,
the optimal models in each class are compared against each other in terms of empirical risk
Remp. The best model is selected as the output of the learning procedure (summarized in
Figure 2.3).

2.1.5.1 Hypothesis definition

A crucial aspect in the learning process is the choice of an appropriate class of models (also
named model structure). A relevant theoretical result in this domain is often referred as No
Free Lunch Theorem (Wolpert, 2002). The theorem states that all machine learning algorithms
are equally effective across all possible prediction problems. In other words, one should
not assume an a priori superiority of one technique over the other. With that in mind, a
heuristic for the choice of a class of hypotheses for a given problem might be to look at some
problem-specific features, for instance: is the phenomenon to model linear or non-linear? Is
it required to be able to interpret the learned model or the final objective is simply to get
the best possible predictions?

Once the broader class of model is selected, some additional architectural decisions still
need to be made (e. g., the size of the input of the model, the number of free parameters,
the presence of a technique to limit the complexity of the model). Careful attention should
be paid to these design decisions as the chosen model structure directly influences the
generalisation capabilities of the model itself.

It should also be noted that the choice of the best model architecture for a given task can
be seen as a learning problem itself, yielding to a meta-learning problem (Hospedales et al.,
2020; Thrun and Pratt, 1998), an actively studied research subject. Recent developments in the
field yielded to the so-called AutoML approaches (Hutter, Kotthoff, and Vanschoren, 2019),
where the choice of a class of hypotheses and the corresponding meta-parameters is framed
as an optimization problem and automatically solve to determine the best configuration for
a given task.
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2.1.5.2 Structural identification

In the remainder of this thesis, we will focus on supervised learning problems, and more
specifically, a regression setting.

In practice, to perform structural identification, we need to define three aspects: a proce-
dure to generate alternative model structures (i. e., model generation), a method for assessing
the alternatives (i. e., model validation) and a technique to select the optimal model among
the candidates (i. e., model selection).

Concerning model generation, two main approaches can be found in the literature (Maron
and Moore, 1997): an exhaustive approach (also called brute force or grid search), which
consists of generating all the possible model structures, testing every different combination
for the different degrees of freedom in the model architecture, and a local search approach,
evaluating only a limited number of configurations through a metric-based research in the
model space.

2.1.5.3 Parametric identification

Once the model has been generated, the next phase in the structural identification procedure
is the determination of the optimal parameters through empirical risk minimization (Equa-
tion 2.12). The choice of an optimization algorithm depends on the form of the empirical
risk function Remp(h, θθθ) and consequently, by the nature of its composing terms: the model
h(·, θθθ) and the loss function L(h(x, θθθ), y). For regression problems, a common choice is a
quadratic error function:

L(h(x, θθθ), y) = (y− h(x, θθθ))2 = (y− ŷ)2 (2.8)

which in turns gives the empirical risk Remp the form of a Mean Squared Error (MSE)
function:

Remp(h, θθθ) =
1
N

N

∑
i=1

L (yi, h (xi, θθθ)) =
1
N

N

∑
i=1

(yi − h(xi, θθθ))2 =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.9)

With this sum of squares format, in the case of a linear model, the optimization problem
can be tackled in an analytical, closed form, through OLS estimation. In case of non-linear
models, or non-quadratic loss functions, where a closed form is not obtainable, the only
approach is to employ iterative search methods, where the optimal values of the parameters
are incrementally determined in an iterative process:

θθθτ+1 = θθθτ+1 + ∆θθθτ (2.10)

Examples of iterative approaches are gradient-based methods where the modification
to the solution ∆θθθτ is derived from the gradient or higher-order derivatives (e. g., gradient
descent, Newton method and Levenberg-Marquardt algorithms), or non-gradient techniques,
where ∆θθθτ is determined via an heuristic approach (e. g., random search, genetic algorithms,
local search approaches).

bias-variance tradeoff and regularization So far, we only considered a pa-
rameter optimization criterion based on empirical risk minimization. However, if the model
is miss-specified, or over-specified, empirical risk minimization might force the model to
specialize on the specific dataset DN it has been training on, reducing its generalization
capabilities in a phenomenon called overfitting. The problem of overfitting can also be
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2.1 machine learning procedure 21

explained by the bias-variance tradeoff (Equation 2.11) principle: the empirical risk can be
decomposed into three components: the bias, the variance and the intrinsic (irreducible)
error (Bontempi, 2013):

Remp(h, θθθ) =
1
N

N

∑
i=1

(yi − ŷi)
2 = (E[ŷ]− y)2︸ ︷︷ ︸

Bias2

+E[ŷ−E[ŷ]]2︸ ︷︷ ︸
Variance

+ σ2
e︸︷︷︸

Error

(2.11)

The intuition behind this decomposition is that the bias term represent how much the
average of the predictions ŷ differ from the true values y, while the variance term represents
how variable are the predictions across different realizations of the model. An overfitted
model minimizes the bias terms, but at the same time increases the variance term, given that
their sum should be constant. An increased variance term will then explain the difference in
performance between training set and testing set.

In order to contrast this phenomenon, one possible solution is to constrain the model to
discard unnecessary parameters and to prefer simpler structures over more complex ones.
This approach will allow to reduce the variance term, at the expense of increasing the bias
term. This solution, called regularization, is implemented by adding to the empirical risk
function an additional term Semp(h, θθθ) controlling the complexity of the model, regulated by
the hyperparameter 1 λ:

θθθi
N = arg min

θθθ∈Λi
Remp(h, θθθ) + λSemp(h, θθθ) (2.12)

Common forms of Semp(h, θθθ) involve having a sum of the absolute values of the parameters
(∑ |θθθ| as in ridge regression, (Hoerl and Kennard, 1970)) or a sum of the squared values
∑ θθθ2 (as in LASSO, (Tibshirani, 1996)).

2.1.5.4 Model validation

After having performed parametric identification, the learned models need to be assessed in
order to determine the best one for the task at hand. Several criteria can be employed to
determine the goodness of a model for a practical application, for instance: simplicity of
use, interpretability, computational efficiency or possibility to integrate expert knowledge.
Although increasing attention is being given to alternative criteria, such as interpretability
(Molnar, n.d.), in practice, the main criterion employed to validate models is predictive
accuracy.

As previously discussed, the process of machine learning basically consists in learning
from the available data DN the best possible approximation of the unknown data generating
process f , from the considered model classes Λi for parametric identification. However,
employing the same data DN to validate the model might yield overly optimistic conclusions
over the model performance with respect to newly available data.

For this reason, a holdout approach is performed, in which the available data DN is
split into two mutually exclusive sets: Dtrain, only employed for model identification (or
training) and Dtest, only employed for model validation (also called testing) (Figure 2.2).
Moreover, for a more robust statistical assessment of the model performance, this procedure
is repeated for an arbitrary amount of times k, in a process named k-fold-cross-validation.
In a k-fold-cross-validation, DN is divided in k partitions. For each of the k folds, a different
partition (i. e., N

k samples) is used as test set, whereas the remaining k− 1 partitions are
used for model identification. (N − N

k samples). In each fold, the empirical risk over the

1 In machine learning, a hyperparameter is a parameter controlling the learning process, to distinguish them
from the values of other parameters (specific to the learning model) which are obtained through training.
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testing set (also called out-of-sample-error) is computed and the cross-validated error is
obtained by taking the average out-of-sample-error across k folds. To further reduce bias
in the data, another approach used in practice is nested cross-validation (Cawley, 2012), in
which the data are first split into two parts: one for model identification and one to test
model generalization. The first part is further split into a part used for model training, and
another one for validation. The training and validations sets are employed to determine the
best model, which is then tested on the remaining set (testing set), initially hold out from
the learning process.

2.1.5.5 Model selection

The last step of the machine learning procedure consists in selecting the optimal model. As
previously discussed, several criteria can be considered in the optimization process of the
model, but in practice, the optimal model is the one minimizing the out-of-sample error
(i. e., the one displaying the best generalization capabilities). This process is also called
winner-takes-it-all, referring to the fact that all the other sub-optimal models are discarded in
favor of the optimal one.

However, the discarded models can still have some relevance for the learning task at
hand, for example by making different assumptions on the relationship between input
and output data (e. g., linear vs non-linear). In addition, in statistical terms, combining the
different discarded models is equivalent to perform a combination of statistical estimators,
which has been proven to improve the estimation capabilities with respect to the individual
estimators (Graybill and Deal, 1959). For these reasons, the combination of estimators approach
(commonly referred as ensemble of estimators) have become increasingly studied in the
scientific literature and applied in practice.

Given their practical relevance and their central role with respect to the strategies proposed
within this thesis, a detailed discussion of the ensemble approach will be performed in
Section 2.5.

Require: Model classes Λi, i ∈ {1, · · · , S}, Learning algorithms Li
Ensure: Optimal model h∗(·, θθθN)

1: for i ∈ {1, . . . , S} do ▷ Structural identification
2: for hj ∈ Λi do ▷ Parametric identification

3: θθθ
i,j
N ← Li(hj,DN) ▷ Identification of optimal θθθ

i,j
N via learning algorithm Li for

hypothesis hj
4: end for
5: hi

N ← arg minhj∈Λi
Remp(hj, θθθ

i,j
N) ▷ Optimal model hi

N in class Λi

6: end for
7: h∗N ← arg mini∈{1,...,S} Remp(hi

N , θθθ
i,j
N) + λSemp(hi

N , θθθ
i,j
N) ▷ Optimal model h∗N across classes

Figure 2.3: Pseudo-code summarizing the model selection procedure, highlighting the nested struc-
ture of structural and parametric identification.

2.2 time series forecasting as a machine learning procedure

A time series is defined as sequence of ordered observations of a given phenomenon, indexed
by time. Formally, we describe the time series associated to the observed quantity y as yt,
with t being the temporal index, whose definition could come from standard time definitions
(SI, ISO: e. g., seconds, hours, days) or by domain-dependent measures (e. g., trading days,
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quarters, business cycles for the economy domain). Figure 2.4 displays an example of time
series in graphical form (on the left, with the value of y being the dependent variable and
time being the independent variable) as well as in tabular form (on the right, with each
column being a vector).
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Figure 2.4: Visual and tabular representation of a time series

The only aspect that hasn’t been covered yet by these definitions is the anticipation of
future events (or prediction/forecasting), which will be the main focus of this thesis, and
will be discussed in the following section.

2.2.1 Problem formulation

The problem of time series forecasting deals with the prediction of the future values of a
given quantity of interest (i. e., the time series y), given a set of N historical observations.

In order to produce meaningful forecasts, some assumptions about the informative content
of the time series and its underlying dynamics need to be made. The key assumption on
which the time series domains rests is that, if we denote with t the last available sample for
the quantity y, the observed data (up to time t) contains relevant information that could
be employed to provide predictions about the future (from time t + 1 onward). In fact, if
the future is independent of the past observations then there is no hope to produce good
forecasts based on historical observations.

In more formal terms, we assume the existence of an unknown Data Generating Process
(DGP), which is responsible for generating both past and future data. In practice, a common
model of the data generating process is the autoregressive model (or process):

{yt+H, · · · , yt+1} = F(yt−d, · · · , yt−d−m+1) + et (2.13)

where the unknown process F produces the future values of the time series {yt+H, · · · , yt+1},
based on the values of the previous m time steps, with an optional delay term d. 2 Note that
the parameters of this model are the form of the unknown function F (linear or non-linear),
the model order (or lag) m and the noise term et, which is considered to be a stochastic
independently and identically distributed process with null mean and fixed variance σ2.

In this form, the problem of time series forecasting can be easily cast as a learning problem
and more specifically a regression problem (cf. Equation 2.5), which can be tackled with the
same statistical learning framework we presented in Section 2.1.

2 In the following of the thesis we will assume d = 0 for the sake of simplicity.
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A comprehensive overview of the different time series forecasting tasks is presented in
Figure 2.5. Note that univariate and multivariate refers to the structure of the input data
to the problem, whereas SISO, SIMO, MISO, MIMO, refer to the structure of the model,
respectively Single/Multiple Input, Single/Multiple Output, where Single/Multiple refer
to the number of time series considered as input/output of the model. The details of the
different formulations are discussed in the following sections.

Time Series
Forecasting

Multivariate

Multi-step

ahead

Joint MIMO-Matrix
AR/ARX

Direct MIMO-Matrix
AR/ARX

Recursive MIMO-Matrix
AR/ARX

One-step

ahead
MIMO-VectorAR/ARX

Univariate

Multi-step

ahead

Joint
SIMO

AR

MIMO-Vector
ARX

Direct
SISO

AR

MISO
ARX

Recursive
SISO

AR

MISO
ARX

One-step

ahead
SISO

AR

MISO
ARX

Figure 2.5: Summary of the different time series forecasting problems and the corresponding tasks.
AR indicates an autoregressive hypothesis (i.e. the forecast uses only the information
from the past of the considered time serie(s)), while ARX indicates the presence of
external regressor(s). Single/Multiple refer to the number of time series considered as
input/output of the model.

2.2.1.1 Univariate time series forecasting techniques - One step ahead

The simplest time series forecasting problem deals with the forecasting of a single time series
(i. e., univariate) for a single step in the future (one-step-ahead). The problem is formulated as
the estimation of a Single-Input, Single-Output (SISO) auto-regressive mapping f : Rm 7→ R:

yt+1 = f (yt−d, · · · , yt−d−m+1) + et+1 (2.14)

where e is the noise term (stochastic i.i.d process with null mean and fixed variance), d
is the delay and m > 0 is called the model order (or embedding lag). This formulation is
general since it can be employed for estimating both a linear (Auto-Regressive (AR)) and
a nonlinear mapping (Non-linear Auto-Regressive (NAR)), and enables the adoption of
supervised machine learning algorithms (Bontempi, Taieb, and Le Borgne, 2012).

In a linear autoregressive formulation (AR) the function f is a linear combination of the
previous m values of the time series:

f (yt−d, · · · , yt−d−m+1) =
t−d

∑
i=t−d−m+1

aiyi (2.15)

In a non-linear autoregressive (NAR) formulation, the function f is a non-linear, non para-
metric function. This flexibility in modeling allows the use of machine learning techniques
for one-step-ahead time series forecasting (Bontempi, Ben Taieb, and Le Borgne, 2013), after
a specific preprocessing phase (Section 3.3.2). This phase transforms the original univariate
time series forecasting problem into the problem of learning the unknown input-output
mapping f through supervised learning. Once a model of the mapping f is learned, it can
be used for returning one-step-ahead forecasts.
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2.2.1.2 Multi-step-ahead univariate forecasting

If the one-step forecasting of a time series is already a challenging task, performing multi-step
forecasting is even more difficult because of additional complications, such as accumulation
of errors and increased uncertainty.

Multi-step-ahead univariate forecasting consists in predicting the next H > 1 values of a
time series.

Strategies for predicting univariate time series multi-step-ahead have been extensively
discussed in (Ben Taieb, Sorjamaa, and Bontempi, 2010; Ben Taieb et al., 2012; Bontempi,
Ben Taieb, and Le Borgne, 2013) and can be summarised into two main classes: single output
and multiple output strategies.

Instances of the first class are the Iterated and the Direct strategies. The Iterated (or
Recursive) strategy (Cheng et al., 2006; Sorjamaa et al., 2007; Weigend and Gershenfeld,
1994) learns a one-step-ahead model fREC : Rm 7→ R

yt+1 = fREC(yt, . . . , yt−m+1) + et+1 (2.16)

and then uses it recursively H times to return a multi-step-ahead prediction. Though
the iterated method is highly sensitive to the estimation error, it has been often used to
forecast real-world time series (Bontempi, Birattari, and Bersini, 1999b; McNames, 1998;
Saad, Prokhorov, and Wunsch, 1998). The noise term e is a stochastic i.i.d process with null
mean and fixed variance.

The Direct strategy (Cheng et al., 2006; Sorjamaa et al., 2007; Weigend and Gershenfeld,
1994) learns independently H models fh : Rm 7→ R, h = 1, . . . , H

yt+h = fh(yt, . . . , yt−m+1) + et+h (2.17)

and returns a multi-step-ahead forecast by concatenating the H predictions. Since the Direct
strategy does not use any estimated value as input, it is not prone to the accumulation of
one-step-ahead errors. Notwithstanding, no conditional dependency between the predic-
tions (Bontempi, 2008; Bontempi and Ben Taieb, 2011; Kline, 2004) is considered and these
methods often require higher functional complexity (Tong, 1983) than iterated ones in order
to model the dependency between two distant instants (Guo, Bai, and An, 1999). The noise
term e is a stochastic i.i.d process with mean equal to zero and constant variance.

The Multi-Input Multi-Output (MIMO) strategy (Bontempi, 2008; Bontempi and Ben Taieb,
2011) (also known as Joint strategy (Kline, 2004)) avoids the simplistic assumption of
conditional independence between future values made by the Direct strategy by learning a
single multiple-output model:

[yt+H, . . . , yt+1] = FJ(yt, . . . , yt−m+1) + E (2.18)

where FJ : Rm 7→ RH is a vector-valued function (Micchelli and Pontil, 2005) and E is a noise
vector whose covariance is not necessarily diagonal (Matías, 2005). So far, this strategy has
been successfully applied to several real-world multi-step time series forecasting tasks (Ben
Taieb et al., 2009; Ben Taieb, Sorjamaa, and Bontempi, 2010; Bontempi, 2008; Bontempi and
Ben Taieb, 2011).

2.2.2 Data preprocessing

This section presents some time-series-specific preprocessing techniques, aiming to improve
the predictive performance of the forecasting model. It is worth noting that some of the
general-purpose techniques presented in Section 2.1.4, such as data normalization and
feature selection still apply in this context.
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2.2.2.1 Missing value handling

A common assumption in the domain of statistical learning is that all the samples in the
dataset are sampled from the same data generating process (i. e., identically distributed) and
independent of each other. However, in the case of time series forecasting, this assumption
neglects the existence of an underlying temporal dependence among the values (i. e., the
unknown mapping f ) to be estimated. For these reasons, a general-purpose missing value
imputation technique should be avoided and specific techniques oriented to temporal data
should be preferred. A complete overview of the different techniques available in the litera-
ture and the corresponding implementations can be found in (Moritz and Bartz-Beielstein,
2017). The techniques range from basic replacement methods such as: Last Observation
Carried Forward or Next Observation Carried Backwards, consisting of repeating the last
available value; to model-based techniques, relying on forecasts made via an autoregessive
model, Kalman filtering or exponential smoothing; and statistical techniques, relying on
interpolation or rolling statistics.

2.2.2.2 Data transformation

A common practice in forecasting models is to transform the variable of interest yt in
order to ensure that the statistical properties of the available data match the underlying
assumptions of the employed forecasting model.

box-cox transformation The parametric transformation initially proposed by (Box
and Cox, 1964) (known as the Box-Cox transformation), for instance, was developed to
ensure assumptions of normality and constant error variance, commonly required for
performing inference statistical models. The Box-Cox transformation of the time series yt,
controlled by the parameters λ1 and λ2 is defined as:

y(λ1,λ2)
t =


((yt+λ2)

λ1−1)
λ1

λ1 ̸= 0

log(yt + λ2) λ1 = 0
(2.19)

For λ1 = 0, the transformation is logarithmic, whereas for λ1 = 1, the transformation
corresponds to a negative shift of one unit of the time series yt. λ2 appears as an additive
constant in both the formulations, having a multiplicative effect on the original time series
when it appears as an argument of the logarithm. By tuning the values of λ1 and λ2, this
transformation can represent a continuum between multiplicative and additive models.

differentiation A relevant property of DGP process underlying the generation of the
time series yt is stationarity. Stationarity can be loosely described as the lack of dependence
of the statistical properties of the DGP on time shift. More formally, two forms of stationarity
can be defined: weak and strict. A process {yt} is said to be weakly stationary if (i) its mean
E [yt] is a constant value, independent of t, and (ii) its autocovariance function Cov (yt, yt+τ)
does not depend on the time t itself, only on time-shift τ. A process is said to be strictly
stationary if its unconditional joint probability distribution does not change when shifted in
time.

A large part of the statistical forecasting theory is based on stationary models, with a
focus on weak stationarity. However, real-life time series are often non-stationary due to the
presence of a consistent trend (an increase/decrease in the mean over time) or to changes in
the dynamic of the process (and consequently in the autocovariance function).
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A common approach to ensure stationarity in time series is to apply differencing. First
order differencing consists in taking the difference between two consecutive values in the
time series:

y′t = yt − yt−1 (2.20)

In practice, the application of a first-order difference is sufficient to ensure that y′t is
weakly stationary in the majority of the cases. However, higher-order differencing might be
required to ensure stationarity. In that case, second order differencing consists in taking the
difference of the first order difference series:

y′′t = y′t − y′t−1 = yt − 2yt−1 + yt−2 (2.21)

In addition, for series presenting a cyclic behavior (i. e., a seasonality), it might be worth
considering seasonal differencing (Hyndman and Athanasopoulos, 2018). Instead of taking
the difference from the previous value, the difference is computed with the corresponding
value in the previous cycle (with s being the length of the cycle).

y′st = yt − yt−s (2.22)

It should be noted that, since the proposed differencing techniques require a lookup of up
to s samples in the past, the length of the differenced time series is reduced with respect to
the original one. In other words, for a time series of length N, the differenced time series
will have length N − s, with s being the number of samples in the lookup.

Last but not least, statistical testing can be applied to determine whether differencing
is required or not. Statistical tests for stationarity are also called unit root tests (referring
to the tested statistical property of the underlying DGP). Different unit root tests are based
on different assumptions and have different null hypotheses. The most used tests are the
Augmented Dickey-Fuller (ADF), and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.

domain-specific Different transformations act on different components of the time
series. As shown in (Hyndman and Athanasopoulos, 2018), differencing can help stabilize
the mean of a time series by reducing (or eliminating) the effects of changes in trend and
seasonality, and could be used as a general-purpose transformation.

However, specific applicative domains might require domain-specific transformations in
order to exploit specific properties.

We will focus here on a domain-specific transformation, from the financial domain,
relevant for the remainder of the thesis: compounding return.

In the framework of stock markets, the price of a stock at the end of the day is named
closing price P(c)

t , or simply price (A.6) at time t (t being the considered trading day).

Pt = P(c)
t (2.23)

Here, instead of considering the simple difference between the price of two consecutive
trading days, we define an additional quantity, the return Rt, as the ratio between two
consecutive prices (minus a constant), corresponding to the net relative increase/decrease
occurred during the day:

Rt =
Pt − Pt−1

Pt−1
=

Pt

Pt−1
− 1 (2.24)
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This allows us to define, in turn, the notions of continuously compounded return (A.7).

rt = ln
(

Pt

Pt−1

)
= ln (Pt)− ln (Pt−1) (2.25)

Here, the logarithmic transformation, in combination with the ratio, helps to smooth the
time series dynamic and consequently could help to stabilize the variance of a time series
(Hyndman and Athanasopoulos, 2018).

2.2.2.3 Seasonal decomposition

In the previous sections, we mentioned the existence of alterations to the stationary behavior
of the time series, namely shifts in the trend, and cyclical behavior.

Through seasonal decomposition (Petropoulos et al., 2021), it is possible to represent the
original time series as a composition of different elements, each of them representing a
specific dynamic: the seasonal component St represents the repeating patterns, the trend Tt

captures the underlying mean and the remainder component Ret includes all the dynamic
that hasn’t been captured by the previous two components.

Two main families of decomposition exist: additive (Equation 2.26) and multiplicative
(Equation 2.27). Their difference is in the way the composition of the elements is modeled,
in the first case, as a sum, while in the second case, as a multiplication.

yt =St + Tt + Ret (2.26)

yt =St · Tt · Ret (2.27)

It should be noted that an additive decomposition of a log-transformed series is equivalent
to a multiplicative decomposition.

For a detailed analysis of the different decomposition techniques, we refer the interested
reader to the following references: (Hyndman and Athanasopoulos, 2018; Petropoulos et al.,
2021).

2.2.2.4 Feature engineering

General-purpose feature engineering (such as the techniques discussed in Section 2.1.4.3)
could be applied without loss of generality to the time series problem. However, the majority
of these techniques do not take into account the temporal dependence that characterizes the
time series forecasting problem. The following sections discuss some techniques for feature
extraction that are specific to the time series domain, namely: date-based, summary-based,
window-based. It is worth noting that all aforementioned categories can include domain-
specific features, manually created according to the expertise of the practitioner. Moreover,
automated feature extraction represents a promising research direction (Mierswa, 2005).

date-based features The majority of the feature engineering techniques works directly
on the value of the time series, neglecting the information contained in the time index itself.
However, according to the type of available data, the time index can be a full timestamp
(i. e., including both date and time), a partial timestamp (including only either the date
or the time component) or a generic increasing index. When timestamps (both full and
partial) are available, they can be used to extract relevant information such as the day of
the week, the week in the year or an indicator variable stating if the corresponding date is
an holiday/working day/weekend. With this approach, every sample can be augmented
by including the extracted information, thus generating a complete time series of length
N. When this information is relevant for the forecasting task at hand (i. e., mobility or sales
forecasting), their extraction can greatly improve the forecasting performance of the model.
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summary-based features An additional approach for extracting features from a time
series is to compute a metric over the N available data points and provide a single value
summarizing a specific property of the series. The tsfeatures library (Hyndman et al., 2020)
contains several examples of such statistics such as the Shannon’s entropy, or stability ( i. e., the
variance of the means of tiled, non-overlapping windows) and lumpiness (i. e., the variance
of the variances of tiled, non-overlapping windows). Additional summary features can be
computed based on the results of the STL decomposition (Section 2.2.2.3) or by fitting a
statistical model (e. g., Holt-Winters or ARCH) and extracting the coefficients corresponding
to the series.

window-based features If there is a need for richer temporal features, a better
approach could be to compute rolling metrics, using either a rolling origin or a sliding window
approach (Tashman, 2000). Common choices for window-based features are rolling averages,
rolling counts and rolling standard deviations. In this case, if we consider the size of the
time window to be sw, the resulting feature is a time series of length N − sw as opposed to a
summary-based statistic, which will yield a single value.

2.2.3 Learning phase

The native format of time series data is not suitable to approach the forecasting problem
as a statistical (supervised) learning problem. For this reason, an embedding procedure
is required to restructure the available data in order to ensure that a statistical learning
procedure could be implemented and that the mapping f can be learned through the
procedure corresponding to the desired forecasting problem. Once embedding is performed,
the theoretical framework presented in Section 2.1.5 can be applied with minor modifications,
in order to account for the temporal correlation between samples. For this reason, in this
section, we will only present the specific adaptations related to the time series domain,
namely those concerning the structural identification process in case of multiple-step-ahead
forecasts, the evaluation procedures and corresponding validation metrics. The different
learning algorithms to learn the mapping f will be presented in detail in Section 2.3.

2.2.3.1 Embedding

Once the process of feature engineering has been completed, the last necessary step before
the statistical learning process is the embedding one. In the embedding phase, the time
series, originally a one-dimensional vector, is embedded into an higher-dimensional format,
in order to be suitable for the learning process. As shown in Figure 2.6, the same time series
can be embedded into different formats, each of them more suitable for a certain category
of models.

The matrix embedding is commonly employed for shallow machine learning models, as it
allows to frame the forecasting problem as the learning of the non-linear one-step-ahead
autoregressive mapping f (Equation 3.3) between the past m values of the time series
{yt−m, · · · , yt} and the future value yt+1.

The tensor embedding is commonly employed for deep learning models, especially for
sequence-based ones (such as RNN), where the data is rearranged in a tensor format, with an
additional window size parameter sw. In this format, the sequence of sw samples is passed
simultaneously to the model which is able to learn the temporal dependencies between the
samples. In addition, the tensor format is better suited for parallel processing.

With the focus of the thesis being on traditional machine learning models, in the remainder
of the thesis, we will mostly focus on the matrix embedding. Figure 2.7 presents the alternative
formats of the matrix embedding in order to fit a one-step-ahead model (also employed in

[ February 19, 2022 at 15:43 – classicthesis v4.6 ]



30 background

t yt

0 -1

1 5

2 1

3 5

4 5

5 4

6 3

7 2

...
...

n yn

yt−2 yt−1 yt yt+1

-1 5 1 5

5 1 5 5

1 5 5 4

5 5 4 3

5 4 3 2

...
...

...
...

yn−3 yn−2 yn−1 yn

Model order m Target

-1

5

1

5

5

1

5

5

1

5

5

4

Dimensionality

Window size sw

Model
order

m

Target

Matri
x em

bed
ding

Tensor em
bedding

Figure 2.6: Embedding of a univariate time series with an embedding order m = 3 for a one-step-
ahead forecasting as a matrix (suitable for traditional Machine Learning (ML) models),
and a tridimensional tensor (suitable for DL models).

the Recursive multi-step-ahead strategy) and a h-step-ahead model (employed in the Direct
strategy).

2.2.3.2 Multiple-step-ahead forecasting strategies

The traditional supervised learning approach is well-suited to solve the problem of one-
step-ahead forecasting (Section 2.2.1.1), as this problem can be naturally framed as an input-
output mapping between the past values {yt, · · · , yt−m+1}, and the single value to forecast
yt+1. However, when the problem requires multiple-step-ahead forecasting (Section 2.2.1.2),
the target variable to predict is not a scalar anymore but indeed a vector of H elements,
with H being the forecast horizon.

When facing a multiple-step-ahead forecasting problem, we typically have a choice
between the recursive and the direct forecasting strategy. With the Recursive strategy, forecasts
are generated using a one-step-ahead model and iteratively fed back into the model until
the desired number of steps is reached. With the Direct strategy, a horizon-specific model is
estimated and forecasts are computed directly by the corresponding model for each forecast
horizon. The strategies and their application in a Machine Learning context are detailed
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Figure 2.7: Embedding of a univariate time series with an embedding order m = 3 for a 1-step and
h-step ahead forecast (h = 4).

in sections 2.2.3.2 and 2.2.3.2 respectively. An overview of the two strategies is provided
in Figure 2.8, while Table 2.1 contains some guidelines for the practical application of the
strategies.

Recursive

• A single model for all the horizons.

• Forecast are made recursively (i.e. fore-
cast at step h based on forecast at step
h− 1).

X y

y3 y2 y1 y4

y4 y3 y2 y5

... ... ... ...

yT−1 yT−2 yT−3 yT

Direct

• h independent models, one for each hori-
zon h.

• Forecast at h step is made using hth

model.

X y

y4 y3 y2 y1 y6

y5 y4 y3 y2 y7

... ... ... ... ...

yT−4 yT−5 yT−6 yT−7 yT−2

Figure 2.8: Comparison of the dataset structure and model identification for direct and recursive
forecasting strategies as described in Figure 2.9 and Figure 2.10.

recursive strategy The first step of the recursive strategy is a data preprocessing
step that transforms the time series (i.e. a time indexed sequence of points) in an embedded
input-output form.

After this step, one disposes of a dataset D of T −m− 1 points in the form (x; y), where
y corresponds to the value of the time series at time t, while x is composed of the m
values preceding the one at time t, where p is one of the hyperparameters of the model,
representing the estimated lag order d. The dataset is then split into a training subset Dtrain

and a validation subset Dtest according to the standard cross-validation schemes.
Then, the model is estimated through a two-levels nested procedure that first aims to

perform a parameter estimation of the models parameters vector θθθ
i,j
train on the training set
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Direct > Recursive for long
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Table 2.1: Guidelines for the application of direct and recursive forecasting strategies according to
(Ben Taieb, Hyndman, and Bontempi, 2014).

Require: Model classes Λi i ∈ {1, · · · , S}, Learning algorithms Li, Time series {y1, · · · , yT}
Ensure: h-step ahead forecasts {ŷT+1, · · · , ŷT+H}

1: {y1, · · · , yT} → D = {(yt−1, ..., yt−m; yt)}T
t=m+1 ▷ Construct dataset D from available

data via matrix embedding
2: D → Dtrain = {(xt−1, yt)}j

t=1 ∨ Dtest = {(xt−1, yt)}T
t=j+1 ▷ Cross-validation split

3: for i ∈ {1, . . . , S} do ▷ Structural identification on Dtest

4: for hj ∈ Λi do ▷ Parametric identification on Dtrain

5: θθθ
i,j
train ← Li(hj,Dtrain) ▷ Identification of optimal θθθ

i,j
train via learning algorithm Li

for hypothesis hj
6: end for
7: hi

train ← arg minhj∈Λi
Remp(hj, θθθ

i,j
train) ▷ Optimal model hi

train in class Λi on Dtrain

8: end for
9: h∗test ← arg mini∈{1,...,S} Remp(hi

train, θθθ
i,j
train) ▷ Optimal model h∗val across classes based on

Dtest

10: m(xt, θθθ
i,j
train)← h∗test ▷ A single model m(xt, θθθ

i,j
train) for h-step forecast is produced

11: for k ∈ {1, · · · , H} do ▷ Recursive h-step ahead forecasting
12: ŷT+k ← m(xT+k, θθθi

train)

13: end for

Figure 2.9: Pseudo-code summarizing the h-step-ahead Recursive strategy, including both model
identification (Lines 1-10) and forecasting (Lines 11-13).

Dtrain and then select the best model m(xt, θθθ
i,j
train), (i. e., the one that minimizes the one

step ahead forecasting error on the validation set Dtest). Nevertheless, this one-step-ahead-
oriented selection does not offer any guarantee of the minimization of the h-step-ahead
forecasting error.

Once this estimation has been completed, the optimal values of these parameters are
used to perform one step ahead forecasts. Every time a new forecast is produced, it is
concatenated to the existing values and fed again into the model as an estimation of the
corresponding missing future value, in order to determine the successive prediction, until
the desired forecasting horizon H. An overview of the complete procedure is presented in
Figure 2.9.

direct strategy The Direct strategy shares several aspects of the model identification
algorithm, namely data preprocessing and parameters optimization procedures with the Re-
cursive (Figure 2.10). Nevertheless, its main difference is that a different model m(k)(xt, θθθ

i,j,k
train)
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Require: Model classes Λi i ∈ {1, · · · , S}, Learning algorithms Li, Time series {y1, · · · , yT}
Ensure: h-step ahead forecasts {ŷT+1, · · · , ŷT+H}

1: for k ∈ {1, · · · , H} do ▷ H different models are fit
2: {y1, · · · , yT} {y1, · · · , yT} → Dk = {(yt−k, ..., yt−k−m; yt)}T−k

t=k+m+1 ▷ Construct
dataset D∥ from available data via matrix embedding

3: Dk → Dk
train = {(xt−k, yt)}j

t=1 ∨ Dk
test = {{(xt−k, yt)}T

t=j+1 ▷ Cross-validation split
4: for i ∈ {1, . . . , S} do ▷ Structural identification on Dk

val
5: for hj ∈ Λi do ▷ Parametric identification on Dk

train

6: θθθ
i,j,k
train ← Li(hj,Dk

train) ▷ Identification of optimal θθθ
i,j,k
train via learning algorithm

Li
7: end for
8: h(k),itrain ← arg minhj∈Λi

Remp(hj, θθθ
i,j,k
train) ▷ Optimal model h(k),itrain in class Λi on Dk

train
9: end for

10: h(k)∗val ← arg mini∈{1,...,S} Remp(hi
train, θθθ

i,j,k
train) ▷ Optimal model h∗test across classes based

on Dk
test

11: m(k)(xt, θθθ
i,j,k
train)← h(k)∗test ▷ A model m(k)(xt, θθθ

i,j,k
train) is produced for each kth forecasting

step
12: end for
13: for k ∈ {1, · · · , H} do ▷ Direct h-step ahead forecasting
14: ŷT+k ← m(k)(xT+k, θθθ

i,j,k
train) ▷ For k-step-ahead forecasting, the kth model is employed.

15: end for

Figure 2.10: Pseudo-code summarizing the h-step-ahead Direct strategy, including both model identi-
fication (Lines 1-12) and forecasting (Lines 13-15).

is estimated for each forecasting horizon k ∈ {1, · · · , H}. As a consequence, a different
dataset D and different parameter vector θθθ

i,j,k
train have to be estimated for each forecasting

horizon h ∈ {1, · · · , H}, resulting in a greater computational complexity. In this case, at
every forecasting horizon k the parameter estimation is performed by minimizing the fore-
casting error on the k-step-ahead forecast. Then, each of the H estimated models is used to
compute the forecast at the corresponding k-step-ahead forecasting horizon.

2.2.3.3 Model validation

As shown in Figures 2.9 and 2.10, model validation plays an important role in determining
the best model for the successive forecast phase. However, the choice of an appropriate
cross-validation technique, as well the choice of the adequate empirical risk Remp are crucial
design choices, with a strong impact on the final selected model. Finally, the choice of
the adequate statistical test is an additional relevant step for an appropriate validation
of the model. In the following sections, we will briefly provide some guidelines for the
aforementioned design choices.

cross-validation The process of cross-validation (Section 2.1.5.4) still remains relevant
for the problem of time series forecasting. As noted by the author of (Tashman, 2000),
validating the model on the same data it has been trained on (i. e., in-sample assessment)
tends to give overly optimistic results, which more often than not cannot be repeated on the
validation sets. For these reasons, the author proposed several cross-validation procedures,
with a specific focus on temporal-dependent data. We present here the two most employed
in practice with contiguous training and validation sets: rolling (forecast) origin (Figure
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2.11), where a training period of increasing size is generated for every cross-validation fold,
and rolling window (Figure 2.12), where a fixed size training period is shifted across time.

In (Tashman, 2000), the author advocates the use of a rolling origin technique, more
specifically in combination with a parameter re-estimation technique.

More recently, the authors of (Cerqueira, Torgo, and Mozetic, 2019) performed an extensive
empirical study of performance evaluation techniques, with a specific focus on time series
problem, including the techniques proposed by (Tashman, 2000) and some of their variations,
as well as traditional cross-validation techniques. The variations involved the introduction
of a gap between the training and validation set (Figure 2.13), whereas the traditional
cross-validation techniques involved standard cross-validation (Figure 2.14), cross-validation
with removal of adjacent samples between training and validation set (Figure 2.15) and
cross-validation with random removal of samples (Figure 2.16).

0 t− 10 t− 5 t t + 5 t + H timesteps

Training period 1

Testing period 1

Training period 2

Testing period 2

Figure 2.11: Example of rolling origin (Tashman, 2000) (also called Prequential growing window
Preq-Bls in (Cerqueira, Torgo, and Mozetic, 2019)) 2-fold cross-validation.

0 t− 10 t− 5 t t + 5 t + H timesteps

Training period 1

Testing period 1

Training period 2

Testing period 2

Figure 2.12: Example of rolling window (Tashman, 2000) (also called Sliding window - Preq-Sld-Bls
in (Cerqueira, Torgo, and Mozetic, 2019)) 2-fold cross-validation.

After their empirical assessment, the authors of (Cerqueira, Torgo, and Mozetic, 2019)
concluded that, based on the previous literature, cross-validation techniques are more
appropriated when the considered time series is stationary, whereas holdout techniques,
such as those presented in (Tashman, 2000) should be preferred for real-life time series.

univariate error measures As shown in Section 2.1.5.3, the choice of an empirical
risk Remp plays a crucial role in the model identification procedure. A common choice, both
for general-purpose machine learning and for time series oriented machine learning, is to use
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0 t− 10 t− 5 t t + 5 t + H timesteps

Training period 1

Testing period 1

Training period 2

Testing period 2

Figure 2.13: Example of Prequential growing window with gap - Preq-Bls-Gap (Cerqueira, Torgo,
and Mozetic, 2019) 2-fold cross-validation.

0 t− 10 t− 5 t t + 5 t + H timesteps

Training period 1 Training period 1Testing period 1

Training period 2 Testing period 2

Training period 3Testing period 3

Figure 2.14: Example of Block cross-validation - CV-Bl (Cerqueira, Torgo, and Mozetic, 2019) 3-fold
cross-validation.

0 t− 10 t− 5 t t + 5 t + H timesteps

Training period 1 Training period 1Testing period 1

Training period 2 Testing period 2

Training period 3Testing period 3

Figure 2.15: Example of hv Block cross-validation - CV-hvBl (Cerqueira, Torgo, and Mozetic, 2019)
3-fold cross-validation.

the mean squared error (MSE). However, as shown by the authors of (Hyndman and Koehler,
2006), this error measure is scale-dependent and might lead to incorrect conclusions about
the forecasting performance, especially on problems displaying time series with different
orders of magnitude. For this reason, they analyzed the forecasting literature, collecting and
classifying the different error measures, as summarized in Table 2.2. Generally speaking, the
authors suggest employing measures that are normalized with respect to a naive forecasting
method (such as the MASE), due to their simplicity of interpretation: values of a naive
normalized error measure greater than one indicate that the forecasts are worse, on average,
than in-sample one-step forecasts from the naïve method. However, if all series have the
same scale, the MAE should be preferable, due to its easier interpretation. Conversely, if
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0 t− 10 t− 5 t t + 5 t + H timesteps

Training period 1 Training period 1Testing period 1

Training period 2 Testing period 2

Training period 3Testing period 3

Figure 2.16: Example of Modified cross-validation - CV-Mod (Cerqueira, Torgo, and Mozetic, 2019)
3-fold cross-validation.

all data are positive and much greater than zero, the MAPE should be preferred. For a
more detailed discussion, we direct the interested reader to (Hyndman and Koehler, 2006).
It is worth mentioning that, in the framework of this thesis, we have implemented all the
presented error measures in a publicly available R package: UEMTS.

multivariate error measures The aforementioned univariate error measures can
be extended without loss of generality to the multivariate case, simply by computing the
chosen error measure for each of the n individual time series Y[i] to obtain a distribution of
n error measures. Finally, the individual measures can be aggregated via traditional statistics
(such as mean or median). Following this principle and the recommendations from the
authors of (Hyndman and Koehler, 2006), we propose the multivariate Naive-Normalized
Mean Squared Error (NNMSE) for the empirical assessments in this thesis:

NNMSE = 1
n ∑n

j=1 NNMSE[j] (2.28)

NNMSE[j] =
1
H ∑H

h=1(YT+h[j]−ŶT+h[j])2

1
H ∑H

h=2(YT+h[j]−YT+h−1[j])2 (2.29)

The NNMSE is defined as the mean of the individual NNMSEs NNMSE[j]. For each of the
n individual time series, NNMSE[j] corresponds to the MSE of the considered forecasting
method divided by the MSE of the Naive benchmark(Section 2.3.2.1). As for the univariate
techniques, it is worth mentioning that, in the framework of this thesis, we implemented a
collection of multivariate error measures in the publicly available R package MEMTS.

2.2.3.4 Statistical testing

Last but not least, once the model has been identified and validated, a statistical assessment
procedure is performed in order to determine whether the difference in performance between
two (or more) forecasting techniques is statistically significant. Statistical hypothesis testing
can also be employed directly on the input data, in order to assess the validity of the
hypotheses underlying parametric forecasting techniques (such as Augmented Dickey-Fuller
test for stationarity). Due to the non-parametric nature of the proposed methods, here
we will focus only on tests assessing the significance of the difference in performance
between techniques. Among the different techniques existing in the literature, we focus on
the Friedman test (with Tukey’s and Nemenyi post-hoc analysis), whose appropriateness
has been discussed in (Demšar, 2006).

friedman-tukey test Friedman’s test is a non-parametric randomized block analysis
of variance whose null hypothesis H0 is that the error distributions are the same across
repeated measures (Friedman, 1937). If the test rejects the H0 hypothesis, a post-hoc analysis
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Type Error measure Formulation

Scale-dependent

MSE(yt, ŷt)
1
T ∑T

t=0(yt − ŷt)2

RMSE(yt, ŷt)
√

1
T ∑T

t=0(yt − ŷt)2

MAE(yt, ŷt)
1
T ∑T

t=0 |yt − ŷt|
MdAE(yt, ŷt) Mdt∈{1···T}(|yt − ŷt|)

Scale-independent

MAPE(yt, ŷt)
1
T ∑T

t=0 | 100 · yt−ŷt
yt
|

MdAPE(yt, ŷt) Mdt∈{1···T}(
∣∣∣100 · yt−ŷt

yt

∣∣∣)
RMSPE(yt, ŷt)

√
1
T ∑T

t=0(100 · yt−ŷt
yt

)2

RMdSPE(yt, ŷt)
√

Mdt∈{1···T}((100 · yt−ŷt
yt

)2)

sMAPE(yt, ŷt)
1
T ∑T

t=0 200 · |yt−ŷt|
yt+ŷt

sMdAPE(yt, ŷt) Mdt∈{1···T}(200 · |yt−ŷt|
yt+ŷt

)

Relative errors

MRAE(yt, ŷt)
1
T ∑T

t=0

∣∣∣ yt−ŷt

yt−ŷbench
t

∣∣∣
MdRAE(yt, ŷt) Mdt∈{1···T}(

∣∣∣ yt−ŷt

yt−ŷbench
t

∣∣∣)
GMRAE(yt, ŷt) n

√
1
T ∏T

t=0

∣∣∣ yt−ŷt

yt−ŷbench
t

∣∣∣
MASE(yt, ŷt)

1
T ∑T

t=1

(
|yt−ŷt|

1
T−1 ∑T

i=2|Yi−Yi−1|

)
NMSE(yt, ŷt)

1
T

∑T
t=0(yt−ŷt)2

var(yt)

Relative measures
RelX(X, Xbench) X

Xbench

Percent Better PB(X, Xbench) 100 · 1
T ∑forecasts I(X < Xbench)

Table 2.2: Overview of the different univariate performance evaluation techniques found in the
literature (Hyndman and Koehler, 2006). In the Relative errors category, ŷbench

t indicates the
forecast of the benchmark method at time t. In the Relative measures category, X represents
the error measure of the analyzed method, while Xbench indicates the error measure of the
benchmark.

is run to find which pairs of methods are significantly different (Pereira, Afonso, and
Medeiros, 2015).

The analysis is based on Tukey’s test and supplies an upper diagonal square matrix
of size equal to the number of methods, where the column elements are sorted by their
rank. Each cell of the matrix can contain two possible colors: grey if the forecasting model
corresponding to the row is significantly worse than the one in the column, orange otherwise.
By looking at the colors (for instance Figure 5.7), this representation allows to visualize
groups of predictions whose forecasting performances are not significantly different from
each other.

friedman-nemenyi The Friedman-Nemenyi test combines the Friedman ranking sta-
tistical test (to determine the ranking of the different forecasting techniques) with a post-hoc
Nemenyi test (to assess the significance of the differences in ranking of the methods). For
each time series in the multivariate dataset, the considered forecasting techniques are ranked
according to the values of their corresponding error measure. Then, the average rank across
time series is computed for every forecasting technique and employed as input for the
Friedman test (Demšar, 2006). Finally, the post-hoc Nemenyi test is employed to assess the
statistical significance of the results of the Friedman test by determining the value of the
critical difference (CD). Two forecasting techniques are considered to not have a statistically
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significant difference if the difference between their average ranks is smaller than the critical
difference.

In the results visualization (for instance, see Figure 4.2), the methods are ordered according
to their performance from left to right (the leftmost the best), while the black bar connects
methods that are not significantly different (at p = 0.05). The top-left bar labeled CD gives a
visual indication of the value of the critical difference.

2.3 forecasting methods

In Section 2.2, we have seen how the problem of time series forecasting can be framed
as a statistical learning problem and consequently how to learn the underlying unknown
mapping f between past and future data, in order to be able to perform predictions. The
goal of this section is to present the different categories of forecasting techniques that can be
found in the literature and to briefly discuss their properties and domains of application.

2.3.1 Forecasting method classification

According to (Januschowski et al., 2020), several criteria, both objective and subjective, can
be employed to classify forecasting methods (cf. Table 2.3).

Category Dimension

Objective

Global vs. Local Methods

Probabilistic vs. Point Forecasts

Computational Complexity

Linearity & Convexity

Subjective

Data-driven vs. Model-driven

Ensemble vs. Single Models

Discriminative vs. Generative

Statistical Guarantees

Explanatory/Interpretable vs. Predictive

Table 2.3: Criteria to classify forecasting methods, according to (Januschowski et al., 2020)

For our purposes, we will focus on the data versus model driven approach to present the
different methods.

We will consider as model-driven approaches the methods that are characterized by a
closed, analytic formulation of the forecasting technique relying on well-defined hypotheses
on the statistical properties of the input data.

On the other hand, we will consider as data-driven approaches the methods that are
based on pattern extraction and hypothesis formulation based on the input data, instead of
a pre-defined analytical formulation.

Moreover, we will distinguish between univariate techniques (i. e., dealing with the
prediction of a single time series, for a SISO or MISO forecasting task, cf. Figure 2.5)
and multivariate technqiues (i. e., dealing with multiple time series at a time, for MIMO
forecasting tasks).

It is worth noting that, without loss of generality, the considered forecasting models can
be used within the Recursive and Direct strategies (Section 2.2.3.2) to produce multiple-step-
ahead forecasts.
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2.3.2 Univariate - Model-driven

This family of models assume that the historical values of the considered time series are
either readily available or could be estimated (via imputation techniques, for instance). In
other words yt−τ is available for any τ > 0. In the following, we will denote with yt the
true value of the considered time series at time t while ŷt will indicate the forecast for the
corresponding time step.

2.3.2.1 Naive/Persistence/Random Walk

The simplest benchmark model, assumes that the current forecast for the upcoming value of
a time series corresponds to the latest available historical value.

ŷt = yt−1 (2.30)

This benchmark can be found with different names in the literature: random walk (referring
to the fact that it corresponds to the optimal forecasting strategy, if the analyzed time series
follows a random walk data generating process (Hyndman and Athanasopoulos, 2018)),
persistence (related to the fact that the assumption underlying the technique is that the past
value will persist in the future) and naive (referring to its simplicity).

Despite its trivial nature, the naive method still is a strong baseline to be employed as a
benchmark, often outperforming more complex techniques in highly dynamical settings.
(Paldino et al., 2021).

2.3.2.2 Average-based models

The basic random model can be improved by extending the lookback period in the past,
in order to better exploit the historical information at hand. All the considered methods
propose different solutions to the tradeoff between the number of observations and the
possibility to sample closer to t.

historical average (ha) The historical average method simply consists in forecasting
the future time series value as the historical average of all the previous N available values.

ŷt =
1
N

N

∑
i=1

yt−i (2.31)

moving average (ma) In order to limit the dependency on old historical values, the
moving average model employs a sliding window of τ past observations. Anytime a new
forecast for the time series is required, the oldest value is discarded from the average and
substituted with the most recent value.

ŷt =
1
τ

τ

∑
i=1

yt−i (2.32)

2.3.2.3 Exponential smoothing

Exponential smoothing is a family of SISO forecasting methods, originally introduced in
(Holt, 2004), in which the forecasts are computed as a weighted average of the past values
with weights decaying exponentially with time. As opposed to standard (moving) average,
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this non-uniform weighting scheme favors more recent observations over older ones. In
simple exponential smoothing (SES), the forecasts are produced by:

ŷt = (1− α)yt−1 + αŷt−1 = ∑t
i=1 α(1− α)i−1yt−i (2.33)

0 ≤ α ≤ 1 (2.34)

where yt and ŷt are the value and the forecast of the time series y, respectively. The
basic method has been extended to include the historical trend of the time series as well
as the presence of seasonality, in both an additive and multiplicative form, leading to the
Holt-Winters and the Holt-Winters Damped techniques (Gardner Jr, 1985, 2006).

2.3.2.4 Ensemble-based methods

theta The Theta method (Assimakopoulos and Nikolopoulos, 2000) is based on the
combination of multiple one-step ahead SISO individual forecasters, called Theta-lines. Each
Theta-line y′′t,ϑ is constructed by taking a second-order approximation of the original time
series, with a specific coefficient ϑ. The final forecast is returned by averaging the forecasts
produced by the different Theta-lines.

y′′t,ϑi
= ϑiy′′t = ϑi(yt − 2yt−1 + yt−2) with 0 ≤ ϑi ≤ 1, t ≥ 2 (2.35)

ŷt =
1

Nϑ
∑i y′′t,ϑi

(2.36)

The Theta ensemble is composed by two lines, with the ϑi coefficients being equal to 0 for
the first line and 2 for the second. Despite its simplicity, this technique outperformed all the
competitors in the M3 real-world forecasting competition (Hyndman, 2020) and has been
selected as benchmark method for the M4 forecasting competition.

ŷt =
1
2
(y′′t,0 + y′′t,2) (2.37)

In (Hyndman and Billah, 2003), the authors demonstrated the equivalence of the Theta
method to a specific form of the exponential smoothing format, in which the drift parameter
is half the slope of a linear regression fitted to the data.

combined Combined (also called Comb) is an ensemble method based on the com-
bination of three SISO one-step-ahead exponential techniques (Gardner Jr, 1985): Single
Exponential Smoothing for capturing the level, Holt-Winters to linearly extrapolate and Holt-
Winters Damped to dampen the linear trend. The combination of the models is obtained by
averaging the three outputs as follows:

ŷt =
1
3
(ŷt,SES + ŷt,Holt + ŷt,DAMPED) (2.38)

For a detailed description of the methods, we refer the interested reader to the relevant
reviews (Gardner Jr, 1985, 2006). Unlike Theta, Combined implements an ensemble of
heterogeneous forecasting methods, each capturing a different characteristic of the original
time series. Like Theta, Combined has been used as benchmark during the different M
competitions (Makridakis, Spiliotis, and Assimakopoulos, 2020b).
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2.3.2.5 Simple Regression (SR-AR, SR-TAR, SR-ARMA)

The simple regression model assumes the existence of a linear dependence of the future
values of the time series on its past values. The unknown model parameters in this depen-
dence are estimated from the data through the minimization of a loss function, in a linear
regression fashion.

sr-ar In the case of a SR-AR, the time series is considered to be autoregressive (i.e.
linearly dependent on its previous values). Besides the actual model parameters γi,t−1, the
depth of the dependence on past value τ is another important structural parameter to be
estimated.

ŷt =
τ

∑
i=1

γi,t−1yt−i (2.39)

sr-arma The SR-ARMA model, on the other hand, specifies an autoregressive depen-
dence on the past values of the time series along with a linear dependence on the current
and past values of a stochastic (imperfectly predictable) term (i.e. the forecasting error εt−i).

ŷt =
τAR

∑
i=1

γi,t−1yt−i +
τMA

∑
i=1

λi,t−1εt−i (2.40)

As it can be noted in equation 2.40, the autoregressive and moving average component
are allowed to have different lag orders, respectively expressed by the parameters τAR and
τMA.

2.3.3 Univariate - Data-driven

2.3.3.1 Artificial Neural Networks

In machine learning and cognitive science, an Artifical Neural Network (ANN) is a network
of interconnected processing elements, called neurons, which are used to estimate or
approximate functions that can depend on a large number of inputs that are generally
unknown. The concept of artificial neural networks is inspired by the structure of the central
nervous systems of animals, in particular the brain. In such biological neural networks, a
set of cells (i.e. the neurons) are interconnected with each other to form a data-processing
network. The processing capability of the network depends on the strength of the connections
between the neurons, which can be dynamically modified across time in response to external
stimuli that the network is subject to. This dynamic adaptation of the connections gives this
system the possibility to learn from the experiences it is subject to.

Both artificial and neural networks are characterized by three features (MacKay, 2003) :
architecture, activity and learning rules.

The architecture is a specification of which input variables are involved in the network and
what are the topological relationships between the nodes of the network. The activity rule
defines how the activities of the neurons change in response to each other (usually with a
short time-scale dynamics). The learning rule specifies the way in which the neural network’s
weights needs to be adapted with time. This learning is usually viewed as taking place on a
longer time scale than the time scale of the dynamics under the activity rule. Usually the
learning rule will depend on the activities of the neurons. It may also depend on the values
of the targets supplied by a teacher.

For our task, we will focus on a specific family of artificial neural networks, the multi-layer
perceptron (MLP). The architecture of a multi-layer perceptron is organized in layers, with
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each layer being fully connected to the following. The first layer, also called input layer, is
composed of the input variables. After it, there are one or more intermediate layers, named
hidden layers, yielding to an output layer with one output variable. In this type of network,
information moves from the input nodes, through the hidden nodes, to the output node.
Moreover, every connection between nodes has an associated weight.

In the following, we will focus on a standard one-hidden layer network (cf. Figure 2.17b),
described by the equation :

m(x) = fo

(
bo +

|H|
∑
j=1

wjo · fh

( |I|
∑
i=1

wijyt−i + bj

))
(2.41)

wij is the weight of the connection between the ith input node and the jth hidden node,
wjo are the weights of the connections between hidden node j and the output node and |H|
is the number of hidden nodes. The number of hidden nodes (|H|) controls the complexity
of the model. The activation rule of such network is divided into two steps. First, each node j
determines its activation aj, by collecting the output of its input nodes:

aj = ∑
i

wijxi (2.42)

Then, the activity of the neuron is computed as a function of the value of the activation aj.
In the case of the considered network, we have two different activity functions: fh(·) for the
hidden layer and fo(·) for the output node. Common choices for activity functions are:

f (x) = x Linear (2.43)

f (x) =
1

1 + e−x Logistic (2.44)

f (x) = tanh(x) =
e2x − 1
e2x + 1

Hyperbolic tangent (2.45)

f (x) =

1 x > 0

−1 x ≤ 0
Threshold (2.46)

Concerning the learning rule, the weights are generally estimated using some specific
optimization procedure, the most popular one being the backpropagation procedure (Rumel-
hart, Hinton, and Williams, 1988). Usually, at the beginning, the weights are chosen to be
random values near zero and the backpropagation procedure updates the weights in order
to minimize the prediction errors. The backpropagation procedure could be done using all
the available data in a single session (batch training) or providing the network one training
example at a time (online training). The error function minimized by neural networks is
nonconvex and so can have multiple local minima. In consequence, the final solution will
depend on the value chosen as starting point. Because of this randomness, neural networks
are often trained multiple times using different random starting values, and the outputs of
the different networks are averaged to obtain the final predictions.

In the following, we will briefly discuss the three most relevant architecture for the
problem of time series forecasting. The activation rule and learning rule are the same as those
of the multilayer perceptron.

It is worth noting that multi-step-ahead forecasting can be performed with the same
architecture by employing either the Recursive (i.e. using a single model, and re-injecting the
one-step-ahead forecast as input value) or the Direct (that is, having multiple models, each
one modeling a h-step-ahead dependency) strategies (Ben Taieb et al., 2012). Alternatively, a
multioutput network (Zhang, Eddy Patuwo, and Y. Hu, 1998) with h output neurons one
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yt−1

yt−2

yt−3

yt−4

fo(·) ŷt

Input
layer

Output
layer

ŷt = fo

(
bo +

|I|
∑
i=1

wioyt−i

)
(2.47)

(a) Linear model (i.e. degenerate multi-layer percep-
tron architecture with zero hidden nodes) and corre-
sponding output equation.

yt−1

yt−2

yt−3

yt−4

fh(·)

fh(·)

fh(·)

fh(·)

fh(·)

fo(·) ŷt

Hidden
layer

Input
layer

Output
layer

ŷt = fo

(
bo +

|H|
∑
j=1

wjo · fh

( |I|
∑
i=1

wijyt−i + bj

))
(2.48)

(b) Standard feed forward multi-layer perceptron archi-
tecture (one hidden layer) and corresponding output
equation.

Figure 2.17: Comparison between the standard ANN architectures for time series for time series
forecasting.

for each of the h-step ahead predictions to perform), can be employed to model a MIMO
forecasting strategy. A multioutput network could be also used to perform one-step-ahead
multivariate prediction (Chakraborty et al., 1992a).

linear model If the network does not have any hidden nodes (cf. Figure 2.17a), the
function approximated by the neural network reduces to a non-linear function fo(·) of the
linear combination of the inputs of the network (i.e. the past values of the time series).

standard feed-forward model Figure 2.17b represents the standard architecture
of a single-layer function approximator. In the case of a regression problem, the activity
functions fh(·) is a logistic function while the fo(·) is a linear function. On the other hand,
in the case of a classification problem fo(·) is also a sigmoid function. Such architecture is
generally considered to be a black-box model, in the sense that the model learned by the
neural network does not have a direct interpretation.

feed forward model with skip-layer connections If we extend the network of
Figure 2.17b, allowing for skip-layer connections (i.e. direct connection between the input
and output layers), we obtain an architecture with a direct interpretation. To be more precise,
as shown in Equation 2.49, the model can be decomposed into a linear autoregressive
component of order |I| and a nonlinear component. In this case, both activity functions f (·)
and g(·) are sigmoids (logistic or hyperbolic tangent) functions.
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yt−1

yt−2

yt−3

yt−4

fh(·)

fh(·)

fh(·)
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Input
layer
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layer

yt = fo

bo +
|I|
∑
i=1

wioyt−i︸ ︷︷ ︸
Linear AR(|I|)

+
|H|
∑
j=1

wjo · fh

( |I|
∑
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wijyt−i + bj

)
︸ ︷︷ ︸

Non-linear component

 (2.49)

Figure 2.18: Feed forward multi-layer perceptron architecture allowing skip-layer connections and
corresponding output equation.

2.3.3.2 Lazy learning / k-Nearest Neighbors

A Lazy Learning (LL) technique (Aha, 1997) delays the learning phase until the prediction
time. In other words, these techniques perform a fit of the model only when a prediction
is required, by using a computationally efficient technique (e.g. linear). This entails a
considerable reduction in the computational cost of the model, while still preserving a good
accuracy.

The lazy learning technique we will consider for time series forecasting is also referred
as k Nearest Neighbors (k-NN) in the literature. A k-NN model is a local nonlinear model
used for classification and regression. In the case of regression, the prediction for a given
input vector x∗ is obtained through local learning (Atkeson, Moore, and Schaal, 1997), a
method that produces predictions by fitting a simple local model in the neighborhood of the
point to be predicted. The neighborhood of a point is defined by taking the k values having
the minimal values for a chosen distance metric defined on the space of the input vector
(Altman, 1992).

To be more precise, every data point can be represented in the form (x, y) where x
represents the vector of input values and y the corresponding output value. Then the
prediction is computed as follows:

y(x∗) =
1
k ∑

i∈kNN
y[i](x) (2.50)

where yi(x) is the output of the ith nearest neighbor of the input vector x in the data set.
In the case of time series forecasting we will have for the one-step-ahead forecast for the

point yt+1, (x, y) = ({yt−p+1, · · · , yt}, ŷt+1).
Given a new input value x∗, also called query point, the prediction is computed in three

steps. First, the available points are ranked according to their distance to the query point x∗.
Then, the k closest points are selected and finally used for the computation of the prediction.
Given these characteristics, the model is considered to be lazy (i.e. deferring the generation
of the model to the moment when a new query is performed) and non-parametric, since
the model has no parameters besides the meta-parameter k. The key parameter k has to
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be selected with care since it is controlling the bias/variance trade-off of the estimates. A
large k will lead to a smoother fit and therefore a lower variance (at the expense of a higher
bias), and vice versa for a small k. Any metric can be used to compute the nearest neighbors
of the input vector x∗ but the most common choice is the standard Euclidean distance.
Despite its simplicity, the k-NN model yields good results in practice and is often used as a
benchmark against more complex models such as neural networks. Instead of computing a
simple average as in Equation 2.51, we can also compute a weighted average with a weight
inversely proportional to the distance from the point.

k-nn multioutput (mimo) The k-NN method can be extended in order to produce
multiple outputs within the same iteration of the algorithm. In this case, every data point
is represented in the form (x, y) where x represents the vector of input values and y the
corresponding output vector. Then the prediction is computed as follows:

ŷ(x∗) =
1
k ∑

i∈kNN
yi(x) (2.51)

where y[i](x) is the output vector of the ith nearest neighbor of the input vector x in the
data set. In the case of time series forecasting we will have for the H-step forecast for point
yt+1, (x, y) = ({yt−p+1, · · · , yt}, {ŷt+1, · · · , ŷt+H}).

optimal value of k - cross-validation based method One of the main advan-
tages of the k-NN method is its simplicity in terms of a reduced number of parameters. To be
more precise, the only relevant parameter for such method is the size k of the neighborhood.

The optimal value of k can be estimated through a cross-validation procedure (Section
2.1.5.4). In the case of the leave-one-out cross validation, the testing set is constituted of a
single value, while the training set contains all the remaining values. The procedure is then
repeated until all the available values have been tested. For this case, the PRESS statistics
a well-founded and computationally efficient way to perform cross-validation has been
developed by (Allen, 1974).

The work of (Bontempi, 1999) extends the same concept to multiple step forecasts by
computing an average error Ek across all the forecasting horizons H, as a function of the
number of neighbors k.

Ek =
1
H

H

∑
h=1

eh (2.52)

At each horizon h, the leave-one-out error is computed according to:

eh =
k

∑
j=1

k
yh
[j](x)− ŷh

k(x)

k− 1
(2.53)

where yh
[j](x) corresponds to the hth component of the output vector of the jth closest

neighbor of the query point x in the training set, while ŷh
k(x) represents the hth component

of forecast output vector with k neighbors.
The optimal number of neighbors corresponds to the value k∗ that minimizes the average

error Ek.

k∗ = arg min
k

Ek (2.54)

Due to its computational efficiency, this optimization strategy is often employed in
practical applications, both for one-step-ahead forecasting and multiple-step-ahead with
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both Recursive and Direct strategies (Section 2.2.3.2) as well as with a the aforementioned
MIMO implementation.

Other strategies to determine the optimal number of neighbors k∗ (based on autocorrela-
tion functions) can be found in (Bontempi and Ben Taieb, 2011).

2.3.3.3 Support Vector Regression

Support Vector Regression (SVR) is a regression methodology based on the Support Vector
Machine (SVM) theoretical framework (Cortes and Vapnik, 1995). The key idea behind SVR is
that the regression model can be expressed using a subset of the input training examples,
called the support vectors. In more formal terms, the model (Equation 2.55) is a linear
combination over all the nSVM support vectors of a bivariate kernel function k(·, ·) taking
as inputs the data point x whose forecast is required and the ith support vector xi. The
coefficients αi, α∗i are determined through the minimization of an empirical risk function
(Sapankevych and Sankar, 2009), solved as a continuous optimization problem.

y =
nSVM

∑
i=1

(αi − α∗i ) k (x, xi) (2.55)

k (x, xi) = e
∥x−xi∥2

2γ2 (2.56)

Among the different available kernel functions we consider here the radial-basis one
(Equation 2.56), for which the optimal value of the γ parameter is determined through grid
search.

2.3.3.4 Gradient boosting

Boosting aims to create an accurate forecaster by combining several "weak learners" models
(i.e. models characterized by a high bias and a low variance (Schapire, 1990)).

A boosted ensemble is constructed in a sequential manner, employing a weighting scheme
of the samples of the dataset. The first model of the ensemble is defined as a simple
average of the available samples m[0](z) = 1

N ∑N
i=1 zi with the weights for all the samples are

initialized to the same values. Then, the model is updated via a linear combination, between
the learner l[j](z) estimated at iteration j and the model constructed at the previous iteration
m[j−1](z), weighted by the coefficient ν ∈ [0, 1]:

m[j](z) = m[j−1](z) + νl[j](z) (2.57)

The weights associated with each sample are adapted in a way to increase the weights
to those values that have been wrongly predicted. The process is repeated for the desired
number of iterations (J in this case), and then the final prediction ẑt is computed as a
weighted sum of the different learners.

ẑt = m[J](z) = m[0](z) +
J

∑
j=0

νl[j](z), (2.58)

The gradient aspect of a Gradient Boosting Machine (GBM) method is related to the fact
that the sample weight update procedure is performed via a minimization procedure of a
given error metric, performed via gradient descent. Moreover, when the chosen error metric
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is the mean squared error (also called quadratic loss), the gradient boosting procedure
is equivalent to training each subsequent model in the ensemble on the residuals of the
previous model. For more details concerning the inner workings for the model, we refer the
interested reader to (Taieb, 2014).

LightGBM (Ke et al., 2017) is an example of gradient-boosted based algorithm specifically
optimized to deal with a large number of data instances and a large number of features,
implemented with both a Direct and Recursive strategy.

2.3.3.5 Random Forest

An additional application of the boosting approach can be seen in the Random Forest (RF)
family of models, where the considered base learner is a decision tree.

A decision tree is a model that partitions the input space into mutually exclusive regions,
based on the values of the different features. In case of a regression tree, after the partitioning,
each region will have a dedicated local regression model (Breiman et al., 2017).

According to (Hastie, Tibshirani, and Friedman, 2009), a decision tree is a good weak
learner due to its combination of an high bias in forecasting and advantageous properties
such as: invariance with respect to feature scaling and various other transformations,
robustness to inclusion of irrelevant features, and intrepretable nature.

In order to improve the forecasting performances of the decision tree, the authors of
(Breiman, 2001a) proposed to perform bagging (a portmanteau of boosting and aggregating),
by training several different decision trees via bootstrapping (i. e., training each model on a
different subset, uniformly sampled with replacement from the original dataset) and then
combining their predictions.

The success of this approach among practitioners can be explained by a combination of
its effectiveness on several regression tasks (Segal, 2004) and its interpretability, stemming
from both its tree-based nature and the presence of informative metrics about the selected
features, such as Variable Importance (Grömping, 2009).

2.3.4 Multivariate - Model-driven

The following section will discuss the traditional, statistical-based techniques for multivariate
and multi-step ahead time series forecasting. We will start by introducing two methods,
Naive and Average, which are often employed as baseline methods for comparison against
more advanced techniques, to move further towards methods explicitly modelling the
autoregressive dependence between the time steps (VAR) and the noise (VARMA).

2.3.4.1 Naive

The Naive method simply consist in setting the forecast of the future h values for all the k
considered series, as the last available value, that is yj,t−1 ∀j ∈ {1, · · · , k}, that is:


ŷ1,t+h ŷ1,t+h−1 · · · ŷ1,t

ŷ2,t+h ŷ2,t+h−1 · · · ŷ2,t
...

...
. . .

...

ŷn,t+h ŷn,t+h−1 · · · ŷn,t

 =


y1,t−1 y1,t−1 · · · y1,t−1

y2,t−1 y2,t−1 · · · y2,t−1
...

...
. . .

...

yn,t−1 yn,t−1 · · · yn,t−1

 (2.59)

Or, in a more compact form:
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Ȳt−1 =


y1,t−1

y2,t−1

· · ·
yn,t−1

 (2.60)

Ŷ(n×h) =
[
Ȳt−1 Ȳt−1 · · · Ȳt−1

]
(2.61)

The Naive approach can be easily extended in other to account for the presence of a
seasonal effect in the data by using as a forecast the most recent observation from the
corresponding season:

Ȳt−L+[(h−1)modL]+1 =


y1,t−L+[(h−1)modL]+1

y2,t−L+[(h−1)modL]+1

· · ·
yk,t−L+[(h−1)modL]+1

 (2.62)

Ŷ(n×h) =
[
Yt−L+[(h−1)modL]+1 Yt−L+[(h−1)modL]+1 · · · Yt−L+[(h−1)modL]+1

]
(2.63)

2.3.4.2 Average

The average method can be constructed with a similar approach as the Naive one, this time
replacing the last value available value with an average of the previous Ta values yielding
to:

Ȳt =
1
Ta


∑Ta

i=1 y1,t−i

∑Ta
i=1 y2,t−i

...

∑Ta
i=1 yn,t−i

 (2.64)

Ŷ(n×h) =
[
Ȳt Ȳt · · · Ȳt

]
(2.65)

2.3.4.3 VAR(p)

Another traditional mathematical model that has been proven successful in modelling linear
dependencies among multiple univariate is the VAR (Tuarob et al., 2017). Analogously to its
univariate counterpart (Section 2.3.2.5), the current value of the multivariate time series Yt is
expressed as a linear combination of the past values Yt−i of the series with time invariant
coefficient matrices Ai plus an error vector term et with zero mean and diagonal covariance
matrix. The number m of considered autoregressive dependencies is also called order of
the VAR model. VAR and state space models have been shown to be equivalent and their
equivalence is discussed in (Gilbert., 1993). The model is represented here in a compact
form:

Ŷt = c +
p

∑
i=1

AiYt−i + et (2.66)

[ February 19, 2022 at 15:43 – classicthesis v4.6 ]



2.3 forecasting methods 49

And here in the corresponding matrix form:


y1,t

y2,t
...

yn,t

 =


c1

c2
...

cn

+


a1

1,1 a1
1,2 · · · a1

1,n

a1
2,1 a1

2,2 · · · a1
2,n

...
...

. . .
...

a1
n,1 a1

n,2 · · · a1
n,n




y1,t−1

y2,t−1
...

yn,t−1


+

...
... (2.67)

+


am

1,1 am
1,2 · · · am

1,n

am
2,1 am

2,2 · · · am
2,n

...
...

. . .
...

am
n,1 am

n,2 · · · am
n,n




y1,t−m

y2,t−m
...

yn,t−m

+


e1,t

e2,t
...

en,t


In order to use the model to perform multivariate forecast, one has to perform the estima-

tion of all the the parameter matrices. Several methods exist in the literature, often stemming
from the multivariate adaptation of well known univariate techniques (i. e., Ordinary least
squares, Yule-Walker equations and Maximum likelihood estimation, (Lütkepohl, 2005))
Here, we will here focus on the multivariate ordinary least squares method, which will
also allow a multiple step ahead forecast with a single optimization. Equation 2.66 can be
rewritten in the following regression form:

Ŷ = BZ + U (2.68)

where:

Ŷ =
[
Ŷt Ŷt+1 · · · Ŷt+p

]
(2.69)

B =
[
c A1 A2 · · · Am

]
(2.70)

U =
[
et et+1 · · · et+m

]
(2.71)

Z =



1 1 · · · 1

Yt−1 Yt · · · Yt+m−1

Yt−2 Yt−1 · · · Yt+m−2
...

...
. . .

...

Y0 Y1 · · · Yt


(2.72)

VAR models have some well known limitations: their linear nature doesn’t allow to capture
nonlinear dependencies among the variables, and, for a correct result of the estimation
process, data must meet some conventional requirements (e.g. null mean and stationarity).
Moreover, the number of parameters to estimate is quadratic in the number of multivariate
series and linear in the model order (i.e. O(n2m), m matrices Ai of size n× n). This number
of parameters can be handled in the case of small problems which involve only a moderate
number of variables (i.e. n smaller than 20).

The authors of (De Gooijer and Hyndman, 2006) provide a nice summary of the historical
evolution of VAR models, its strengths and limitations. Among the presented applications,
several different domains are discussed: (Downs and Rocke, 1983) for yearly municipal
budget data, (Edlund and Karlsson, 1993) for quarterly unemployment rate data, (Heuts
and Bronckers, 1988) for monthly truck sales data, (Hillmer, Larcker, and Schroeder, 1983)
for monthly accounting data and (Lin, 1989) monthly hospital patient movements. It should
be noted that the common characteristics of the different applications are the reduced
dimensionality of the forecasting problem n < 10 and the reduced number of available
samples N < 102.
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regularized var In order to deal with the increase in the number of variables, opti-
mized version of a VAR(m) model have been developed. Among the different variants, we
cite here the work of (Messner and Pinson, 2019), where regularization on the number of
free parameters to estimated is performed via LASSO regularization (Tibshirani, 1996). In
addition, the proposed variant allows for an incremental update of the model parameters
further reducing the computational cost required to fit the model.

2.3.4.4 Partial least squares

The use of linear combinations for reducing the dimensionality of a multivariate time series
is not restricted to static PCA (Section 2.4.1). In (Box and Tiao, 1977) the combination aims to
maximize the predictability of the series. This is obtained by canonical correlation between
Yt+1 and its lags Yt, . . . , Yt−m, i.e. finding the coefficients that maximize the correlation
between the present and the past. Similar approaches rely on reduced rank models.

The extension of this principle to multi-step-ahead forecasting led to the use of partial
least squares (Franses and Legerstee, 2010). PLS allows the joint forecasting of the H steps
ahead of the multivariate time series on the basis of the lagged vectors Yt, . . . , Yt−m. This is
a multi-input multi-output regression task where the number of inputs amounts to nm and
the number of outputs to Hn respectively. The benefit of PLS is that it allows at the same
time a dimensionality reduction of the inputs and a joint prediction of the outputs, taking
then into consideration the dependency between the future steps.

2.3.5 Multivariate - Data-driven

By looking to the scientific literature one can observe that two categories of models con-
sistently appear among the most used approaches for multivariate forecasting. On one
side, we can find closed-form linear models (such as the VAR family, presented in Section
2.3.4.3), whose applicability is limited to problems with a moderate number of variables (i.e.
n smaller than 20), since their model structure, albeit interpretable, encounters numerical
estimation problems as the number of variables increase, hindering their applicability. On
the other side, to cope with the increase of dimensionality, large scale representation-based
models (such as RNN and CNN deep network) have been developed. Instead of having a
well-defined mathematical model of the dependencies among the variables, this category
of techniques is able to learn its own internal representation of the dependencies from the
data. Thanks to their modular architecture, this family of models can be easily adapted to
scale up to forecast a number of series n > 102 with a large number of available samples
N > 103. This scaling up can still ensure good forecasting performance, but the increase
of the size of the problem, combined with the complex structure of the network greatly
limits the interpretability of this family of models, (hence their classification as black-box
models). Despite their lack of robustness in highly dynamic settings, as well as the need for
specialized architecture for efficient computational performance and extensive fine tuning
(Guo et al., 2016), representation-based techniques have become increasingly popular in
the scientific literature. In the following sections we will give a brief overview of the most
relevant representation-based techniques for multivariate time series forecasting.

2.3.5.1 Deep Learning

Deep feed-forward neural networks have been developed in order to overcome the limi-
tations of single-layer neural networks, namely their inability to learn approximate more
complex dependencies (such as spatio-temporal dependencies). The architecture of a deep
feed-forward neural network is closely related to those presented in Section 2.3.3.1, with the
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only differences being in the number of hidden layers, and potentially in the choices of the
activation functions for the hidden layers. The depth of the network is given by the number
of hidden layers L. For instance, the model for a network with L layers, each layer having
Ml , l ∈ {1, · · · , L} neurons, can be summarized as follows:

For the input layer:

a1
i =

M1

∑
j=1

wijyt−j + b1
i (2.73)

f 1
i = h(a1

i ) (2.74)

For the L− 1 intermediate layers:

f k
i = h

(
Mk

∑
j=1

wk
ij f k−1

j + bk
i

)
(2.75)

For the output layer:

yt+1 = h

(
ML

∑
j=1

wL
ij f L−1

j + bL
i

)
(2.76)

where ak
i represents the activation for neuron i ∈ {1, · · · , Mk} in layer k and h(·) is the

nonlinear, differentiable activation function (i.e. the activity rule). Wk ∈ RMk−1×Mk represents
the weight matrix for layer l, while bk ∈ RMk×1 represent the bias vector. The empirical
assessment of these architectures on the time series domain (Lara-Benítez, Carranza-García,
and Riquelme, 2021) has shown that despite the increase in predictive power given by the
additional hidden layers, and an extensive grid search of the optimal configuration of the
network, the forecasting performances of deep feed-forward neural networks still remains
far from optimal. For these reasons alternative architectures such as CNN and RNN have been
analyzed to exploit the spatio-temporal dependencies in the multivariate time series data.

convolutional neural networks In order to account for local temporal dependen-
cies among the input values, convolutional neural networks can be used as an alternative
architecture to perform time series forecasting. A convolution between a signal f and a filter
g is theoretically defined as:

( f ∗ g)(t) =
∞

∑
j=−∞

f (j)g(t− j) (2.77)

In practice, a convolution at point t is computed by shifting the filter g over the signal f
along the j axis and computing the weighted sum of the two. Repeating this operation for
every available t generates a third signal ( f ∗ g) which represents the impact of the filter g
on the original signal f .

In the context of CNN, the filter g is not pre-defined but rather learned from the available
data by minimizing a certain metric (namely the forecasting error). Once the filter is learned,
it can be used to extract translation-invariant features from the input f . The intuition behind
a convolutional neural network is thus to learn in each layer a different filter and to stack
several layers together to combine the different low-level features extracted in antecedent
layers in a more powerful feature extractor.
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In the domain of time series, convolution can be applied in both a one-dimensional and
two-dimensional fashion. One-dimensional convolution tries to extract features either in the
temporal dimension (i. e., within a single time series, over time) or in the spatial dimension
(i. e., across different time series at a fixed time). Conversely, two-dimensional convolution
works on both dimensions at the same time. Moreover, a dilated convolution (also called
temporal convolution) (Yu and Koltun, 2015) (i. e., including in the convolution points that
are a distance d from the current input) can be also used to model multi-scale temporal
dependencies.

In (Borovykh, Bohte, and Oosterlee, 2017), CNN are used for univariate, recurrent multiple-
step-ahead forecasting both unconditional, and conditional on a second time series. In order
to avoid degradation problems in training the network, the authors propose to perform
residual learning (that is, training the network to approximate the error function, rather
than the target value).

On the other hand, (Sezer and Ozbayoglu, 2018) and (Liu, Hou, and Liu, 2017) propose a
time series to image conversion approach, in order to be able to reuse state-of-the-art CNN
architecture for image recognition/prediction tasks, for financial forecasting.

In (Sezer and Ozbayoglu, 2018), images are created by plotting the values of 15 standard
technical indicators over 15 time steps. These values are then fed into the network in order
to output the most likely investment position (e.g. buy, hold, sell), and the quality of the
prediction is evaluated by computing the returns yielded by employing the forecast strategy.

In (Liu, Hou, and Liu, 2017), the image is created by stacking the stocks data in a 2D
format such that on one axis represents the hourly evolution of a stock, while the other
represent the daily evolution of the stock over a period of 24 days. The network is than
used to perform a univariate, recurrent multiple step ahead forecasting of a given stock.
Finally, the recent work by (Liu et al., 2021) proposed a dedicated architecture (SCINet),
derived from the aforementioned temporal convolution architecture (Bai, Kolter, and Koltun,
2018), working natively with numerical data, without dedicated spatio-temporal modeling
components, achieving state-of-the-art performances on multivariate problems.

recurrent neural networks An alternative approach to better model dynamic
temporal dependencies among the input data is the introduction of recurrent connections in
the hidden layers of a standard feedforward network, creating a recurrent neural network.
In their simple form (also known as simple RNN or Elman RNN) (Graves, 2012; Lipton,
Berkowitz, and Elkan, 2015), the recurrent connections come from a hidden state Ht, which is
also used for predicting future values Yt:

Ht = σ(WHYYt−1 + WHHHt−1 + BH), (2.78)

Yt = WYHHt + BY (2.79)

The matrices WHY, WHH , WYH , BH and BY are the learnable parameters (weights and biases)
of the network. Given the recurrent nature of the network, the network cannot be trained
with the traditional backpropagation algorithm, but requires a specific adaptation of the
algorithm, called backpropagation through time (Graves, 2012), that basically performs
an unfolding of the recurrent structure through time (Figure 2.19). A sigmoid activation
function σ allows the modelling of nonlinear dependencies, while the recurrent connections
allow the modelling of long-term temporal dependencies.

A recurring problem in deep neural networks is the vanishing/exploding gradient
(Hochreiter et al., 2011). This problem is due to the limited domain of the activation
functions employed in the network, in combination with the derivative chain rule employed
in backpropagation, which yields to longer chains of multiplications of small numbers, as
the number of layers in the network increase. To solve this problem, several approaches
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Figure 2.19: Unfolding of a recurrent neural network through time. Public domain schema by Olexa
Riznyk.

have been proposed in the literature, but we will focus on those that have been empirically
proven to be more effective: LSTM and GRU (Figure 2.20).

(a) Long Short Term Memory (LSTM), by Andre Holzner (b) Gated Recurrent Unit (GRU) by Cristopher Olah

Figure 2.20: Comparison between the LSTM and GRU cells internal architectures.

lstm The key idea of LSTM networks (Hochreiter and Schmidhuber, 1997) is to augment
the neuron of a simple RNN with a time varying internal state ct, and to have a 3 step
mechanism for updating such state (Figure 2.20a). First, the previous output of the neuron
ht−1 is combined with the new input values yt and fed in both an input gate, to determine
the new candidate values it for the update of the internal state and to determine the
activation of the forgetting gate ft, indicating with values should be removed from the
internal state. Then, the two values are combined to update the internal state. Finally, the
updated state ct is combined with the output activation vector ot to produce the new neuron
output ht.

LSTM networks are often employed in multivariate and multistep ahead forecasting
within an hybrid architecture, in combination with a linear model. For instance, in (Lai et al.,
2017), LSTM networks with skip-layer connections are employed as non-linear component
in an architecture where the linear forecast is produced through a simple autoregressive
model. (Goel, Melnyk, and Banerjee, 2017) also employs a similar approach, where first
a linear model is fitted to the available data, and then an LSTM network is fitted to the
residual of the first regression.

gru A GRU (Cho et al., 2014b) is another type of improved recurrent cell, without
any explicitly modeled internal state as LSTM, but with a similar multi-step forgetting
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mechanism, here the update gate vector zt and the reset gate vector are computed in a
similar fashion, both depending on input data yt and previous cell output ht, each one with
specific weight matrices (Figure 2.20b). Then, the internal state h′t is computed by combining
the current input and the application of the reset gate to the previous output. Finally the
new output is produced ht by combining the previous output and the current internal state
h′t.

GRU networks have been directly employed in (Zhang, Wu, and Chang, 2018) for a
multivariate and multiscale (short term, long tem and cycle), one-step-ahead forecasting
of electricity load forecasting in a two layer architecture. In (Chang et al., 2018), GRUs are
employed as non-linear forecasting component in a more complex architecture, where a
convolutional network is used as a feature extractor (encoder) for the non-linear component,
whose prediction is then combined with the linear forecast provided by traditional ARMA
model for both univariate and multivariate multiple step ahead forecasting.

related literature For an overview of the most effective techniques, the authors
of (Hewamalage, Bergmeir, and Bandara, 2021) propose an extensive study RNN testing
different data preprocessing methods, hyperparameter configurations, architectures, type
recurrent units and optimizers, comparing across datasets with diverse characteristics,
concluding that LSTM cells, in combination with seasonal decomposition of the input is
a competitive model configuration compared to state-of-the-art techniques. In addition,
the authors of (Bianchi et al., 2017) provide an additional empirical study, comparing
the performance of RNN with different cell types against non-recurrent architectures such
as Nonlinear AutoRegressive with eXogenous inputs or Echo State Networks. In their
empirical assessment, on highly dynamic time series, they confirmed the effectiveness of
gated units such as LSTM and GRU, although they advise the use of non-gated units for
series presenting long-term dependencies with smoother dynamics.

Last but not least, the work of (Lara-Benítez, Carranza-García, and Riquelme, 2021)
provides a complementary extensive empirical evaluation, including feed-forward, recurrent
and convolutional network on several real datasets. Their conclusions are aligned with the
other empirical assessments, confirming the outperformance of LSTM cells over different
types of gated cells as well as different architectures (e. g., CNN or temporal convolution
networks).

transformers Transformers are a specific neural network architecture, initially de-
veloped for natural language sequence prediction (Vaswani et al., 2017), based on the
encoder-decoder principle: the encoder part of the network tries to compress the informative
content of the input data into a latent representation, which is then used by the decoder to
forecast the future data. In addition, a specific algorithm (i. e., Scaled Dot-Product Attention)
is employed to direct the attention of the network to the most relevant elements of the input
sequence to learn (in this case, the time series). Transformers have shown their abilities
to have state-of-the-art performances on multivariate and long-term forecasting (Eisenach,
Patel, and Madeka, 2020), as well as on spatio-temporal forecasting tasks (Grigsby, Wang,
and Qi, 2021). However, as shown by (Lara-Benítez et al., 2021), although their performances
are comparable with respect to other neural techniques (such as CNN and RNN), their
computational cost for both model optimization and inference is generally higher.

2.3.5.2 Multi-task learning

Multitask Learning (MTL) is defined as "an inductive transfer mechanism whose principle
goal is to improve generalization performance, by leveraging the domain-specific information
contained in the training signals of related tasks" (Caruana, 1997). In this paper, the author
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proposes a methodology to transform a set of independent neural networks trained for single
task learning, into a a single network able to learning the multiple related tasks in parallel
while using a shared representation (i.e. a common hidden layer). The rationale behind this
idea is that the shared representation should contain domain specific information which
should be common to all the tasks, Through an empirical evaluation on both classification
and regression tasks, the author proceed to show the effectiveness of the approach. The
paper is concluded by an extension of the methodology to K-nearest neighbors and kernel
regression. More recently, (Ruder, 2017) contains an extension of Caruana’s work to deep
neural network, highlighting different deep architectures for multi-task forecasting. While
the previous articles focus on parallel multi-task learning, (Laptev, Yu, and Rajagopal, 2018)
can be seen an example of sequential multi-task learning or transfer learning, where first a
general model is trained for univariate, multistep ahead time series forecasting on a given
data subset, then up to n layers of the network are frozen and the same network is reused
for a similar forecasting task on a different dataset, showing an improvement in forecasting
accuracy especially with a reduced amount of data.

2.4 dimensionality reduction

If we consider the aforementioned learning process, the number of input features for the
learning algorithms may be extremely high due to several reasons, ranging from the simple
multivariate nature of the problem to the number of newly generated features through
feature selection. However, a large number of features in learning may negatively affect
generalization performance, especially in the presence of irrelevant or redundant features.

For these reasons, dimensionality reduction is a crucial technique in improving the
learning performance of the considered forecasting techniques.

Dimensionality reduction techniques transform the considered dataset Y with dimen-
sionality n into a new dataset Z with dimensionality q < n, while trying to preserve the
geometry of the original data as much as possible. In practice, neither the geometry of the
data manifold, nor the real intrinsic dimensionality of the original dataset X are known. For
these reasons, dimensionality reduction is often approached as an optimization problem,
aiming to determine the optimal dimensionality q and the best low-dimensional representa-
tion, according to a defined metric. Several techniques for dimensionality reduction have
been proposed in the literature throughout the years, see (Cunningham and Ghahramani,
2015) for a specific focus on linear techniques and (Van Der Maaten, Postma, and Herik,
2009) for an extensive review on both linear and non-linear techniques.

Regardless of the type of approach for dimensionality reduction, a common hypothesis is
to assume the independence among the samples composing the original dataset Y. Although
this hypothesis might seem counterproductive for time-dependent data, some of these
techniques (such as PCA, from the linear domain and autoencoder, from the non-linear
domain) have been successfully employed in the time series domain, and will be discussed
and employed throughout this thesis (addressed in Sections 2.4.1 and 2.4.2, respectively).
In addition, we will also consider non-linear techniques specifically tailored to temporally
dependent data, such as recurrent auto-encoder (Section 2.4.3).

Concerning PCA (Section 2.4.1), two approaches for the estimation of principal components
will be discussed: the batch approach which uses all the available data at once, and the
incremental approach, which performs sequential updates of the estimation.

Regarding autoencoder-based techniques (Sections 2.4.2 and 2.4.3), it is worth mentioning
that, even though it will not be discussed in the thesis, it is possible to easily implement an
incremental approach given the possibility to easily retrain the underlying neural networks.
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2.4.1 PCA and time series

PCA performs dimensional reduction in multivariate statistical analysis by doing orthogonal
rotations of the observed coordinates. PCA transforms the n original variables Y[1], . . . , Y[n]
into q new variables Z[1], . . . , Z[q], called principal components, such that the new variables
are uncorrelated with each other and account for decreasing portions of the variance of
the original variables. The q principal components (Equation 2.80 are defined as weighted
sums of the elements of Y with maximal variance, under the constraints that the weights
are normalized and the principal components are uncorrelated with each other.

Z[p] =
n

∑
j=1

wjpY[j], p = 1, . . . , q (2.80)

It is well-known from basic linear algebra that the solution to the PCA problem is given
in terms of the unit-length eigenvectors of the correlation matrix of Y. Let us order the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and the corresponding eigenvector in the matrix W of size
n× q. Given the multivariate time series matrix Y, Z[p] = YW[, p] represents the projection
of the series on the pth principal component.

Though PCA has been developed originally for independent Gaussian observations, it has
been found to be useful also in time series, the most common type of non-independent data.
In (Tsay, 2014) PCA is applied directly to a four dimensional economic time series as well as
to the residuals of fitted VAR models to show that it is able to find some stable relationships
between variables. In (Jolliffe, 2002) it is explicitly stated that when the objective of PCA is
not inferential, non-independence of data should not prevent from using PCA. The main
difference is that, while in conventional PCA covariance is computed between variables
measured at the same time, in time series it is possible to compute also covariances to
model dependencies between variables at different times. A nice example of use of PCA for
summarizing multivariate time series is in (Papadimitriou, Sun, and Faloutsos, 2005). Note
also that in empirical sciences PCA can be found with alternative denominations, like EOF
(empirical orthogonal function), SSA and MSSA (singular spectrum analysis for univariate
and multivariate case, respectively), or Karhunen-Loeve method (more for continuous time
series).

In SSA and MSSA (Golyandina, Nekrutkin, and Zhigljavsky, 2001), the series is decom-
posed in a weighted sum of decorrelated components, each being a moving average of
the original time series. This allows to discover dominant periodicities (SSA) or oscillatory
spatial patterns. SSA has also been used for forecasting: in this case the approach, after
the decomposition step, creates a reconstructed series based on a subset of components.
This series is then forecast by using a one-step-ahead linear approach (Linear Recurrent
Formula).

2.4.1.1 Batch and incremental PCA

The conventional approach to PCA computation requires a sequence of matrix operations
whose computational complexity is a function of the number of data rows N, the number
of variables n and the desired number of components q, (i.e. O(N(n + n2 + nq))). In an
online setting, where the principal components should be recomputed from scratch at each
observation step, this approach is not affordable.

For this reason, observation-incremental approaches have been proposed in (Arora et al.,
2012; Hegde et al., 2006; Oja, 1992; Sanger, 1989; Weng, Zhang, and Hwang, 2003). These
approaches can be classified in two main categories: stochastic optimization and neural
network based.
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Stochastic optimization approaches tackle the PCA estimation problem as a continuous
optimization problem, whose objective is to maximize the variance explained by the principal
components (with additional orthogonality constraints among the components). These
approaches derive the equations for the incremental update of the components, either as
a gradient ascent step (Arora et al., 2012) or as a matrix perturbation (Hegde et al., 2006).
The method by Weng et al. (Weng, Zhang, and Hwang, 2003) derives a similar update rule,
while additionally proving the statistical efficiency of the estimation.

Neural-network-based approaches use a specifically designed single layer neural network,
together with a weight optimization algorithm, in order to estimate the principal components
of the input dataset. These methods allow to produce the eigenvalues of the covariance
matrix as output of the network, while the network weights converge to the eigenvectors.
(Oja, 1992) and (Sanger, 1989) propose two different variations on the update rules of the
network weights, with the second one introducing an asymmetry in the weights update to
improve the convergence rate.

In addition, there exists also component incremental PCA methods (e.g. NIPALS-PCA and
GS-PCA), where the estimation of the principal components is made one factor at a time,
(Andrecut, 2009) and iterative stochastic block-incremental method (Mitliagkas, Caramanis,
and Jain, 2013), which performs a block decomposition of the original data matrix followed
by an estimation of the principal components.

2.4.2 Feed-forward Autoencoders

Feed-forward autoencoders are a specific category of neural networks trained to learn iden-
tity mapping from inputs to outputs (Vincent et al., 2010). Their architecture is characterized
by having an input and output layer with the same number of nodes (corresponding to the
number of original dimensions n), and by the composition of two symmetrical sub-networks:
an encoder

Zt = fθ(Yt) (2.81)

that transforms n-dimensional inputs Yt into some latent (encoded) q-dimensional represen-
tation Zt, and a decoder

Ŷt = gθ′(Zt) (2.82)

that reconstructs an n-dimensional approximation Ŷt of the input Yt on the basis of the
latent q-dimensional feature Zt. The two sub-networks are composed solely of feed-forward
connections among the layers and might be composed of one or more hidden layers. The
networks are usually trained as a single joint network (i.e. the output of the encoder is used as
input of the decoder) using gradient descent techniques, such as backpropagation, with the
objective of minimizing the mean-squared error between the input and the output (Vincent
et al., 2010). In their simplest form, the mappings fθ and gθ′ are linear functions of the inputs
and the encoded features Zt closely related to the PCA principal components (Bourlard
and Kamp, 1988). If the hidden layers are non-linear, autoencoders behave very differently
from PCA, with the ability to capture multi-modal aspects of the input distribution (Bengio,
2009; Vincent et al., 2010). In the context of this thesis, we will consider two types of
autoencoder: the base version, having only one hidden layer in both the encoder and the
decoder (henceforth base), and a version having two hidden layers in both the networks
(called deep).
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2.4.3 Recurrent Autoencoders

Recurrent Neural Networks (RNN) is a state-of-the-art neural network approach (Section
2.3.5.1 and (Hewamalage, Bergmeir, and Bandara, 2021) for a detailed review) where the
presence of recurrent connections (i.e. allowing loops in the connection graph between
nodes), allows the modeling of dynamic temporal dependencies. Without loss of generality,
the encoder-decoder architecture presented in Section 2.4.2, can be applied with recurrent
neural networks:

Ht = σ(WHYYt−1 + WHHHt−1 + BH) (2.83)

Zt = fθ(WZHHt + BZ) (2.84)

H′t = σ(WH′ZZt−1 + WH′H′H′t−1 + B′H) (2.85)

Ŷt = gθ′(WYHHt + BY) (2.86)

where the encoder (Equations 2.83, 2.84) and decoder network (Equations 2.85, 2.86)
will have independent matrices for weights WHY, WZH,WHH, WH′Z, WH′H′ , WYH and
biases BH,BZ,B′H,BY. This encoder-decoder architecture is often referred as a sequence-to-
sequence (S2S) (Sutskever, Vinyals, and Le, 2014) model in the literature (Hewamalage,
Bergmeir, and Bandara, 2021). Variations of this architecture (with multiple hidden layers
and specific attention mechanisms) have been effectively used in the framework of time series
forecasting, see (Du et al., 2020) and (Bianchi et al., 2017). Additionally, a theoretical study
of the sequence-to-sequence framework for time series forecasting, allowing to determine
theoretical bounds have been performed by (Kuznetsov and Mariet, 2018). Last but not least,
recurrent encoder-decoder architectures have been effectively employed for dimensionality
reduction in the signal processing field (Yang et al., 2020), (Susik, 2020).

For these reasons, we consider two recurrent autoencoders based on LSTM (Hochreiter
and Schmidhuber, 1997) and GRU (Cho et al., 2014a) units, respectively. The choice is
motivated by the fact that in the extensive study (Bianchi et al., 2017) concluded that gated
units (such as LSTM and GRU) outperform other recurrent methods when the temporal
dependencies can be non-linear and abrupt, and that there is no clear outperformance of
LSTM over GRU, or vice versa. Both the LSTM and the GRU autoencoder are implemented
as a three layer network: input, hidden and output layers. Both the input and output layer
have a number of neurons equal to the number of input time series, a sigmoid activation
function and are fully connected to the hidden layer. The hidden layer is constituted of a
number of recurrent cells (LSTM or GRU) equal to the number of factors to estimate.

2.5 forecast combination

In the previous sections, we presented different families of models (namely data-driven
and model driven) making different assumptions on the nature of the data and on the
relationship between input and output.

A traditional model selection procedure will assess the different models on the available
data and then select the best-performing model, according to some performance criteria
(see Section 2.2.3.3), discarding the others (sometimes also referred as winner-takes-it-all
approach). However, the discarded models can still have some relevance for the forecasting
task at hand, for example by considering alternative input variables, or by making different
assumptions on the relationship between input and output data (e. g., linear vs non-linear).
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2.5.1 Problem formulation

Starting from this idea, the authors of (Bates and Granger, 1969) first proposed the concept of
forecast combination (also referred as ensembling in the ML literature), initially limited to two
methods and one-step-ahead forecasting. The authors showed that, if the considered models
employ independent information, the combined forecast improves over the individual ones.

Moreover, the authors of (Newbold and Granger, 1974) extended the initial idea to more
than two methods, and showed that the method combination also reduces the variance of
the forecasting error (a similar result, albeit from a different derivation, can be found in
(Bontempi, 2013)).

The one-step-ahead formulation of the forecast combination procedure can be described
as follows:

ŷ(T+1) =
K

∑
k=1

f̂ (k)
(T+1)w

(k)
T (2.87)

where K is the number of considered machine learning models, f̂ (k) is the output of the
k-th considered model and w(k) is the corresponding combination weight.

The seminal papers (Bates and Granger, 1969; Newbold and Granger, 1974) propose
several time-dependent configurations, in order to adapt the forecast combination according
to the forecasting performance of the different composing models f̂ (k). The combination
can be based either on the forecasting error of the individual model ei,t = yt − f̂ (i)t or an
estimation of the covariance of the forecasting error between different models.

For the forecasting error based techniques, the authors propose a basic form (Equation
2.88) based on past squared error, on a time window of size ν.

wi,T =

(
∑T−1

t=T−ν e2
i,t

)−1{
∑M

j=1

(
∑T−1

t=T−ν e2
j,t

)−1
} (2.88)

In (Newbold and Granger, 1974), they also propose variations employing an exponential
decaying scheme controlled an hyperparameter or constant weighting scheme combination.
In addition, they proposed both a weighted and an unweighted schemed based on the
estimation of the covariance matrix on the error. In their experiments on economic data, the
authors conclude that, while employing statistical models (i. e., ARIMA and Holt-Winters),
the error-based weighting scheme of Equation 2.88 appears to be consistently among the
top performers.

Without loss of generality the formulation proposed for one-step-ahead forecast (Equation
2.87) can be extended to the multi-step-ahead forecasting as follows:

ŷ(T+i) =
K

∑
k=1

f̂ (k)
(T+i)w

(k)
T , ∀i ∈ [1, H] (2.89)

where the H-step-ahead can be obtained by employing a multi-step-ahead forecasting
strategy (e. g., Direct, Recursive - Section 2.2.3.2) as in (Koprinska, Rana, and Rahman, 2019).

In a similar fashion, the one-step-ahead univariate formulation can be extended to
multivariate one-step-ahead forecasting:

Ŷ(T+1) =
K

∑
k=1

F̂(k)
(T+1)w

(k)
T (2.90)
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where K is the number of considered machine learning models, F̂(k) is the output of the
k-th considered multivariate model and w(k) is the corresponding combination weight, as
proposed in (Liu et al., 2019) and (Rana, Koprinska, and Agelidis, 2016)

At the time of writing, to the best of our knowledge, we are not aware of any forecasting
combination technique tackling both the multivariate and multi-step-ahead aspects.

The forecasting combination framework presented in this section focuses on a fixed
(i. e., the number and the type of the underlying forecasting methods does not change
over time) combination of heterogeneous forecasting techniques (as no hypothesis on
the form of the underlying models is made), with time-varying weights. The following
sections will focus on presenting a brief overview of the available techniques in terms of
these three dimensions: type of combination (fixed vs variable), type of underlying models
(homogeneous vs heterogeneous) and type of combination weights (fixed vs time varying).

2.5.2 Fixed versus variable combination

The basic combination rule proposed a combination of a fixed number of models. However,
as proposed by the author of (Kuncheva, 2004), several modifications can be applied to the
model combination in order to improve its performances.

On one hand, one can act on the input data for the models by updating the available data
in an online fashion (either with or without modification of the ensemble itself) as well as
by working on the input features of the model. For instance, the authors of (Wang et al.,
2018) propose a fixed combination of models, where the composing models are constructed
differently by performing either data or feature resampling.

On the other hand, one can work on the models involved in the combination, by either
updating/retraining the model as required or by structurally changing the composition
of the forecast combination, for example by removing/replacing the worst performing
individual forecasting techniques. In (Cerqueira et al., 2017b), for example, the authors
propose to form an adaptive combination of a subset of the best performing models,
according to their performance on fixed-size windows of the most recent data. In (Saadallah,
Priebe, and Morik, 2020), the authors propose to adapt the forecast combination via a two
step process, in which the first detects the performance drift (i. e., the moment when a
change in the combination is required), while the second step selects the best performing
models. Finally, the authors of (Boulegane, Bifet, and Madhusudan, 2019) propose a dynamic
selection of the components of the combination, testing two solutions: based on a manually
set performance threshold and based on a probabilistic selection, with a selection probability
inversely proportional to the forecasting error.

2.5.3 Homogeneous versus heterogeneous combination

The presented combination framework doesn’t set any hypothesis or the type of the models
composing the combination. However, as pointed out by the authors of (Cerqueira et al.,
2017a) learning models of the same type (i. e., with similar assumptions concerning the
model structure) are prone to behave similarly across similar data-spaces. Moreover, the
authors of (Clements and Hendry, 1998) showed that if the predictors are based on the
same input data, it is difficult for a combined forecast to outperform each of the individual
predictors. For these reasons, it is generally preferred to introduce some forms of diversity
in the ensembles in order to improve its forecasting performance, as shown by the (Priebe,
2019) through bias-variance analysis of the forecasting error of forecast combination.

A large part of the techniques analyzed in the literature achieves this goal by combining
different model families (e. g., statistical and machine-learning based; naive and more
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complex methods as in (Cerqueira et al., 2017b; Saadallah, Priebe, and Morik, 2020; Sánchez,
2008), among others). Nevertheless, employing a set of homogeneous underlying models
can still produce competitive results via the diversity introduced by techniques like bagging
(Inoue and Kilian, 2004) (i. e., combining homogeneous models trained on different input
datasets obtained via bootstrapping), as in (Bergmeir, Hyndman, and Benítez, 2016). The
drivers behind the bagging effectiveness are further investigated in (Petropoulos, Hyndman,
and Bergmeir, 2018), where the authors conclude that combining different variations of the
same model is more beneficial in improving forecasting accuracy than extensively focusing
on parameters optimization. In addition, they propose a combination rule proportional to
the frequency with which the considered model has proven to be optimal for the considered
dataset.

2.5.4 Time invariant versus time varying combination weights

A naive approach for forecasting combination involves setting equal weights for all the
models in the combination: w(k)

t = 1
K ∀k, ∀t. In this configuration, the forecast combina-

tion corresponds to a time-invariant average of the forecasts of the independent models
(henceforth referred as Average or Av.). Despite its simplicity, such approach often yields
competitive results, and it is commonly employed as a reference baseline to compare the per-
formance of more advanced methods against. However, this combination proposal shows its
limitation in highly dynamical settings, where the time invariant approach fails to properly
adapt to the change in dynamics. As discussed in (Kuncheva, 2004), dynamic combiners (or
“horse racing” algorithms) are proposed to cope with this issue by adapting the forecast
combination through a change in the combination rule, instead of the number and type of
underlying models, as discussed in Section 2.5.2.

Examples of Dynamic combiners have been proposed by the authors of (Sánchez, 2008)
where forecasters are combined using an exponential re-weighting strategy based on their
past performance, in combination with a forgetting factor to favour more recent observations
over older ones. Another example is given by the authors of (Cerqueira et al., 2017b), where
a set of meta-learners are trained to predict the forecasting error of the underlying models,
whose prediction are employed to weight the components of the forecasting combination.
Additionally, the article also includes dynamic weight adaptation with dynamic ensemble
composition.

A similar idea is employed in (Wang et al., 2018), where meta-learning and dynamic
combinations are employed together with random sampling of the input data and random
feature sampling.

2.5.5 Stacking

Last but not least, an alternative approach to forecast combination is implemented through
model stacking:

ŷ(T+1) = FSTACK( f̂ (1)
(T+1), · · · , f̂ (K)

(T+1)) (2.91)

Instead of performing a linear combination of the model, in a stacking approach, an
additional predictor FSTACK is used. The predictor takes as input the forecasts of the
underlying models trained on the available data and produces the combined forecast. The
standard stacking architecture is composed of two layers: the first being the underlying
models, and the second being the meta-model combining them. An example of such
architecture can be found in (Pavlyshenko, 2020), where a probabilistic (bayesian) approach is
employed to combine predictive models, allowing to quantitatively measure the uncertainty
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in the predictions (and consequently the predictive risk). In principle, the mapping FSTACK
can involve multiple layers of stacking, provided that: the first layer combines the underlying
models, each i-th layer employs the predictions from layer i− 1 and the final layer provide
the output prediction.
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C O N T R I B U T I O N S

"It is difficult to make predictions, especially about the future."

– Danish proverb 3

3 https://quoteinvestigator.com/2013/10/20/no-predict/
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3
M E T H O D O L O G I C A L C O N T R I B U T I O N S

This chapter introduces two original strategies for multivariate and multiple step-ahead
time series forecasting:

• The first strategy (called Dynamic Factor Machine Learning) is a machine learning
extension of a famous technique in econometrics: it transforms the original high-
dimension multivariate forecasting problem by first extracting a (small) set of latent
variables (also called factors) and forecasting them independently in a multi-step-ahead
yet univariate manner. Once the multi-step-ahead forecast of factors is computed, the
predictions are transformed back to the original space.

• The second strategy (called Selective Multivariate to Univariate Reduction through
Feature Engineering and Selection) addresses the dimensionality issue in the original
space and deals with the combinatorial explosion of possible spatial and temporal de-
pendencies by feature selection. The resulting strategy combines expert-based feature
engineering, effective feature selection strategies (based on filters), and ensembles of
simple models in order to develop a set of computationally inexpensive yet effective
models.

Before moving to the actual contributions, in this chapter we formalize the problem of
multivariate forecasting, and briefly present the existing theoretical framework around the
problem (Section 3.1)

3.1 multivariate forecasting

A multivariate time series having n observed variables and N observations is conventionally
represented via a matrix Yt. In the scientific literature, two main conventions exist for
the representation of Yt: row-wise and column wise. In the row-wise representation, the
different rows of the matrix represent the individual time series, while the column represents
the different time steps, yielding to a matrix of size n× N. Conversely, in the column-wise
representation, the time series is arranged in the different columns, while the row represents
the different time steps, in a N × n matrix. In the following of the thesis, we will employ the
column-wise representation as shown in Figure 3.1.

According to (Januschowski et al., 2020), three main approaches exist to deal with a
multivariate forecasting problem: local modeling, global modeling and hybrid modeling
(Table 2.3).

3.1.1 Local modeling

In local modeling (Januschowski et al., 2020), a single model is estimated independently
for each time series to be forecast. In other words, the multivariate forecasting task is
decomposed into a set of n Single Input Single Output (SISO) or Multiple Input Single
Output (MISO) tasks. In the case of SISO tasks, each of the n forecasting tasks is treated as
an independent problem, thus ignoring the cross dependencies with the other series. Here,
Yt[i] denotes the t-th time step of the i-th series of the multivariate series Y.

65
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Figure 3.1: Representation of a multivariate time series in a graphical format, and the corresponding
matrix format.


Yt+1[1] = f (NAR)

1 (Yt[1], . . . , Yt−m+1[1]) + et+1[1]
...

Yt+1[n] = f (NAR)
n (Yt[n], . . . , Yt−m+1[n]) + et+1[n]

(3.1)

where each function f (NAR)
i : Rm 7→ R, i = 1, . . . , n, represents a non-linear autoregressive

model NAR with model order m.
In the case of MISO tasks, multiple series can be used as input covariates to forecast a

single time series.

Yt+1[1] = f (NARX)
1 (Yt[1], . . . , Yt−m+1[1], . . . ,

Yt[n], . . . , Yt−m+1[ni]) + et+1[1]
...

Yt+1[n] = f (NARX)
n (Yt[1], . . . , Yt−m+1[1], . . . ,

Yt[n], . . . , Yt−m+1[n]) + et+1[n]

(3.2)

where each function f (NARX)
i : Rm×n 7→ R, i = 1, . . . , n, represents a non-linear autore-

gressive model with model order m and up to n external regressors.
Although the choice of ignoring cross dependencies (partially, in the case of a MISO

decomposition or totally, in the case of a SISO decompostion) might seem disadvanta-
geous at first glance, it allows to greatly reduce the model complexity, thus reducing the
variance of the model and its computational learning time. Moreover, the local models
could potentially be trained in parallel, thus improving even more the efficiency of the
training. Due to this reduced computational complexity, local models are often used as
benchmarks, outperforming more complex techniques in some practical cases (such as in
the M4 Competition (Makridakis, Spiliotis, and Assimakopoulos, 2020b)).

By employing the forecasting strategies introduced in Chapter 2, the local modeling
approach can be easily augmented in order to perform multiple-step-ahead forecasting with
the Direct, Iterated and Multiple Input Single Output (MIMO) strategies.
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3.1.2 Global modeling

In global modeling, the multivariate forecasting problem is tackled as a single MIMO problem,
employing a Non-linear Vector Auto-Regressive (NVAR) formulation. In other words, the
model F : Rn×m 7→ Rn takes the embedding vectors of size m of the n time series as input
and produces the one-step-ahead forecasts as follows:

Yt+1 = F (Yt−d, Yt−d−1, . . . , Yt−d−m+1) + Et+1 (3.3)

where m denotes the lag (or embedding order), d is the delay and E stands for a multi-
variate zero-mean noise term, with diagonal covariance matrix.

Analogously to the univariate case, multiple-step-ahead forecasting (H-step ahead here)
can be performed by extending the established Direct, Iterated and MIMO strategies (Ben
Taieb et al., 2012) to the multivariate case.

Similarly to the univariate case (Section 2.2.3.1), an input-output embedding of the
multivariate data (Figure 3.2) can be performed to allow the application of the Recursive and
Direct strategies. In both cases, the multi-step-ahead forecasting problem is reduced to a
one-step-ahead one (at time t + 1 and t + H, for Recursive and Direct respectively) as follows:
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Figure 3.2: Embedding of a multivariate time series with an embedding order m = 2 for a 1-step
ahead forecast and h-step ahead forecast (h = 4), with zero delay (d = 0).

With the Iterated multiple-step-ahead strategy a single one-step-ahead MIMO model FI :
Rn×m 7→ Rn is iteratively re-used H times to produce the desired forecasts:

Yt+1 = FI(Yt, . . . , Yt−m+1) + Et+1 (3.4)

On the other hand, the Direct H-step-ahead strategy employs H separate MIMO models
Fh : Rn×m 7→ Rn, each one producing the h-step ahead forecasts ∀h ∈ {1, · · · , H}:

Yt+h = Fh(Yt, . . . , Yt−m+1) + Et+h (3.5)
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Finally, the MIMO strategy can be extended to the multivariate case as well:[
Yt+H · · · Yt+1

]
= FJM(Yt, . . . , Yt−m+1) + E (3.6)

with FJM : Rn×m 7→ RH×n being the model jointly providing H-step ahead forecasts for
all the n time series.

The global model category allows to properly model the cross-dependencies between the
different time series, by increasing the complexity of the functional mappings that have to
be estimated (cf. equations 3.4, 3.5, 3.6). The number of parameters to be estimated usually
grows quadratically (O(n2)) with respect to the number n of input time series, increasing
the computational complexity of the estimation process, and limiting their applicability as
the number of time series increases.

3.1.3 Hybrid models

In order to exploit the advantages, and limit the drawbacks of both categories, hybrid
approaches have been developed, where both the global and the local approaches coexist in
different forms.

Hierarchical forecasting models are an example of hybrid forecasting models (Athana-
sopoulos et al., 2017; Taieb, Taylor, and Hyndman, 2017b; Wickramasuriya, Athanasopoulos,
Hyndman, et al., 2015) assuming the existence of a hierarchical structure among the indi-
vidual time series constituting the multivariate panel. According to (Athanasopoulos et al.,
2017), three main approaches exist for hierarchical time series forecasting: top-down, bottom-
up and middle-out, each of them referring to the way the hierarchy is defined. Figure 3.3
shows an example of bottom-up specification, with the corresponding formulation either as
a system of equations (Eq. 3.7) or, equivalently in a matrix form (Eq. 3.8).

yt

yA,t

yAA,t yAB,t yAC,t

yB,t

yBA,t yBB,t

Figure 3.3: Example of bottom-up hierachical structure among time series. Each yX,t represent a
univariate time series, whereas the graph structure defines the hierarchical composition
of the series (see Eq. 3.7 and 3.8 for the corresponding mathematical formulation).


yt = yAA,t + yAB,t + yAC,t + yBA,t + yBB,t

yA,t = yAA,t + yAB,t + yAC,t

yB,t = yBA,t + yBB,t

(3.7)
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(3.8)

All the different hierarchical forecasting techniques can be employed with a two step
procedure: forecast and reconciliation. During the forecast phase, the predictions for each
individual series in the hierarchy Ŷt are produced. During the reconciliation phase, the
forecasts are transformed via the summation S and grouping G matrices in order to obtain
coherent (i. e., correctly adding up across the hierarchy) forecasts Ỹt:

Ỹt = SGŶt (3.9)

Additional approaches adopt local kernel-based methods (Hwang, Tong, and Choi, 2016)
with a global feature selection approach based on memetic algorithm, as well as neural
models integrating both local components and global components to perform the global
forecast (Sen, Yu, and Dhillon, 2019), or where the output of local models is used as input
for the global models (Smyl, 2020).

Finally, a well-known hybrid model category is constituted by dynamic factor models
(Stock and Watson, 2010), where the global forecasting problem is reduced to a set of local
forecasting problems, through dimensionality reduction. Dimensionality reduction ensures
that as much informative content as possible is transferred from the original multivariate
problem to the local ones.

3.2 the dynamic factor machine learning framework

A large part of the research in the domain of dynamic factor models focuses on linear factor
estimation techniques combined with model-based forecasting approaches. On one hand,
this family of models ensures strong theoretical guarantees, deriving from their analytical
formulation. On the other hand, such guarantees are often limited by strong hypotheses
defined on the model, and often bound to problems with low-dimensionality (in order to be
analytically tractable). To cope with these limitations, we propose our first contribution: the
DFML, a hybrid multivariate forecasting strategy, extending the Generalized Dynamic Factor
Model framework. Unlike the DFM, the DFML strategy integrates both linear and non-linear
factor estimation techniques, in combination with both model-driven and data-driven factor
forecasting techniques.

The Generalized Dynamic Factor Model (DFM) is a technique for multivariate forecasting
originating in econometrics (Forni et al., 2005) (for a detailed review see (Stock and Watson,
2010)). The basic idea of DFM is that a small number of series (the factors) can account for
the dynamics of a much larger number of variables. Such factors are latent, i.e. not directly
observable and have to be estimated from the original data. Once estimated, they can be
can be forecast instead of the original series, reducing the complexity of the multivariate
forecasting process.
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In more formal terms:

Yt+1 = WZt+1 + EY,t+1 (3.10)

Zt+1 =
m−1

∑
i=0

(At−iZt−i) + EZ,t+1 (3.11)

where Zt is the vector of unobserved factors of size q (q << n), Ai are q× q coefficient
matrices, W is the matrix (n× q) of dynamic factor loadings and the disturbances terms
EY, EZ (also called idiosyncratic disturbances) are assumed to be uncorrelated. In the original
formulation, the latent factors follow a vector autoregressive time series process and usually
do not have a direct interpretation with respect to the original time series. Note that though
the seminal work on DFM adopted a frequency domain approach, we will limit ourselves to
consider here the time domain only.

The practical implementation of DFMs demands to address two main issues: the estima-
tion of the factors (including their number) and the forecasting of their evolution. According
to (Stock and Watson, 2010) there are three main ways to estimate dynamic factors in
literature: the first employs parametric estimation (e.g. maximum likelihood), the second
makes use of non-parametric methods (e.g. PCA) and the third relies on Bayesian estimation.
It should be noted that, when parametric estimation is employed, some identifying assump-
tions (i. e., uncorrelated error terms, and specific structures of the factor matrix) need to be
made in order to ensure a consistent estimation (Lütkepohl, 2005). As far as forecasting is
concerned, both one-step-ahead and multi-step ahead forecasting based on VAR have been
proposed in the econometric literature. For an extended study on the use of DFM and PCA
for the forecasting of 149 monthly macroeconomic variables we refer the reader to (Stock
and Watson, 2002).

3.2.1 The DFML framework

From a theoretical standpoint, the two key concepts in the DFM framework are problem
decomposition and complexity reduction.

The problem decomposition is achieved by transforming a single multivariate forecasting
problem into two independent subproblems of factor estimation and forecasting.

Complexity reduction is achieved via factor estimation, effectively determining a reduced
number of factors that can account for the majority of the dynamics in the original time
series.

The architecture of our proposed strategy, the DFML, implements the same key con-
cepts (Figure 3.4), while extending the conventional DFM approach both in terms of factor
estimation and forecasting.

For factor estimation, the linear method (PCA, for which estimation consistency was
proved (Stock and Watson, 2010)) implemented in the original DFM, is complemented by the
usage of non-linear and non-parametric techniques, namely feed-forward neural networks
(both shallow and deep) and recurrent neural networks encoder-decoder architectures based
on LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014a) units.

For the forecasting component, we propose a two-fold improvement.
The first improvement is related to the available forecasting techniques. Conventional DFM

only includes a multivariate, statistical technique (i. e., VAR - Section 2.3.4.3). In addition
to VAR, in the DFML we implemented well-known statistical forecasting techniques, em-
ployed as benchmarks for the M4 competition (Makridakis, Spiliotis, and Assimakopoulos,
2020b), namely Exponential Smoothing (Holt, 2004), Theta method (Assimakopoulos and
Nikolopoulos, 2000), and a statistical ensemble technique of these benchmarks, as well as
machine learning based techniques, such as MIMO lazy-learning (Bontempi and Ben Taieb,
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Y[1]

Y[i]

Y[n]

Dimension

reduction

n →
q(<< n)
dimensions

Z[i]

Z[1]

Z[q]

Forecasti

Forecast1

Forecastq

Ẑ[i]

Ẑ[1]

Ẑ[q]

Dimension

increase

q → n
dimensions

Ŷ[i]

Ŷ[1]

Ŷ[n]

Dimensionality reduction Forecast

DFM PCA VAR

DFML PCA/NN/RNN Statistical/ML-based

Figure 3.4: Schema of the DFML architecture with a table summarizing the different components as
implemented in the different methods.

2011) and gradient boosting based methods (such as LightGBM (Ke et al., 2017), among the
top performers in the M5 competition (Makridakis, Spiliotis, and Assimakopoulos, 2020a).

The second improvement addresses the production of multiple-step-ahead forecasts.
Conventional DFM techniques employ a one-step-ahead forecasting technique, where multi-
step-ahead forecasting requires the re-use of the same forecasting model recursively, with
the drawback of propagating the forecasting error. In the DFML, we implemented dedicated,
state-of-the-art forecasting strategies such as Iterated, Direct or MIMO (Section 2.2.1.2) to
address the multiple-step-ahead problem.

Overall, several compositions of linear/non-linear factor estimation and linear/non-linear
forecasting are implemented and assessed. The following sections briefly introduce the
different factor estimation and factor forecasting techniques, while a thorough assessment is
performed in Chapter 4.

It is worth noting that the factor estimation and the factor forecasting modules (i) follow an
encoder-decoder like structure (Sutskever, Vinyals, and Le, 2014), (ii) the two components are
decoupled from one another, easily allowing to further extend the architecture by plugging
in new components and (iii) the complexity of the forecasting step is made independent of
n.

3.2.2 Factor estimation

The problem of factor estimation involves the determination of a number of factors q,
smaller than the original number of time series n, such that these factors give a good
approximation of the dynamics of the original data. A common approach to produce an
estimation of the factor adopts dimensionality reduction procedures. A dimensionality
reduction procedure assumes that the original multivariate N × n time series Y can be
represented in a q < n dimensional space while retaining as much informative content as
possible about the original dynamics. The lower dimension data is then represented by the
Z matrix, having dimensions N × q. Multiple techniques have been developed throughout
the years, concerning dimensionality reduction, making either a linear assumption about
the structure of the lower dimension subspace (e.g. PCA (Hotelling, 1933)), or non-linear
assumptions (e.g kernel PCA (Schölkopf, Smola, and Müller, 1998), autoencoders (DeMers
and Cottrell, 1993)) (for a detailed review see (Van Der Maaten, Postma, and Herik, 2009)).
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In our strategy we implement three families of dimensionality reduction methods: tech-
niques that do not take into account temporal dependencies, both linear (Section 2.4.1) and
non-linear (Section 2.4.2), and techniques that take into account temporal dependencies
(Section 2.4.3).

3.2.3 Factor forecasting

Once the factors are estimated, a forecasting of Zt is required in order to produce the
forecasts Ŷ for the original series. It should be noted that when a factor estimation tech-
nique (cf. Section 2.4.1) produces decorrelated factors, the original MIMO forecasting task
is transformed into q independent SISO forecasting problems, whereas other factor esti-
mation techniques do not guarantee an independent decomposition. For this reason, in
our strategy we include both univariate and multivariate factor forecasting techniques,
considered as state-of-the-art approaches in both the statistical and the machine learning
domain (Januschowski et al., 2020).

3.2.3.1 Statistical techniques

Statistical techniques (also model-driven techniques (Januschowski et al., 2020)) usually
define a series of assumptions on the available data, in order to provide a closed-form
formulation of the dependency between input and output. We consider here Exponential
Smoothing (Section 2.3.2.3), Theta (Section 2.3.2.4) and Combined (Section 2.3.2.4) methods,
SISO techniques for one-step-ahead forecasting as well as VAR, a MIMO technique for one-
step-ahead forecasting. All those models can be adapted for multi-step-ahead forecasting
by implementing a recursive strategy (Section 2.2). The rationale for considering statistical
techniques is that in several forecasting competitions on real-world data (Hyndman, 2020)
simple forecasting techniques tend to outperform more complex methods.

3.2.3.2 Machine learning based techniques

Machine learning techniques (or data-driven in (Januschowski et al., 2020)) do not make
any parametric assumptions on the data distribution. In this category, we consider lazy
learning (i.e. a single model technique) (Ben Taieb et al., 2012) (Section 2.3.3.2) and gradient
boosting (an ensemble technique) (Ke et al., 2017) (Section 2.3.3.4). Those models can be
used for multi-step-ahead forecasting both via a Recursive and a Iterative strategy (Section
2.2). Additionally, we consider a SIMO implementation of the lazy learning model Joint
(Bontempi and Ben Taieb, 2011), in which all the h steps to be forecast are returned by a
single model.

3.2.4 Dynamic Factor Machine Learner extensions

This section focuses on introducing two extensions to the basic DFML framework: iterative
factor estimation and automatic hyperparameter selection.

The first extension tries to address the computational issues related to the large dimen-
sionality (both in terms of series and samples of the multivariate input time series) by
introducing an incremental approach to factor estimation. The main idea of this approach is
to replace the computationally intensive process of factor estimation of the whole available
data with a reduced complexity alternative, allowing for incremental updates with smaller
chunks of data (e. g., a single sample or a set of samples). An additional advantage of this
approach is that it extends the capabilities of the DFML framework to deal with streaming
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data, a situation where the input data is continuously incremented by the arrival of new
samples.

The second extension focuses on improving the factor forecasting component by imple-
menting a grid search for the optimal values of most relevant hyperparameters: number
of factors, multi-step-ahead strategy, forecasting technique. The optimal hyperparameter
combination is determined via minimization of the out-of-sample prediction error. The
rationale of this approach is to simplify the model tuning procedure by automatically
providing to the end-user the best framework configuration given the available data.

3.2.4.1 Incremental factor estimation

The first improvement introduces an incremental (also referred as online) approach for
factor estimation, with a focus on linear techniques. The conventional approach to PCA

computation (i. e., batch) requires a sequence of matrix operations whose computational
complexity increases linearly with the length N of the time series and quadratically with
the number of dimensions n (Section 2.4.1.1). In a large-scale setting, where the number of
dimensions is large n > 100, and the length of the time series is continuously increasing,
recomputing the factors from scratch at each observation step becomes quickly unfeasible.
For this reason, we integrated several state-of-the-art linear incremental factor estimation
techniques (Section 2.4.1.1). These incremental techniques allow a considerable reduction
in terms of computational cost, all while being consistent with respect to their batch
counterparts.

3.2.4.2 Automatic hyperparameter search strategy

The second improvement introduces a joint selection of the hyperparameters (number of
factors, predictor, multi-step-ahead strategy) based on an out-of-sample accuracy criterion
(computed after reconstruction) related to the specific forecasting task.

A pseudo-code of the search strategy is available in Fig. 3.5 1 . Lines 1-2 show that DFML
searches in a space of models characterised by the pair (p, a) where p denotes the number of
factors and a ∈ A the univariate multi-step ahead forecasting strategy (e.g. direct, iterated, or
MIMO). For each candidate pair DFML assesses after reconstruction (Line 7) the out-of-sample
multi-step-ahead accuracy (Line 9) and returns (Line 12) the most promising one.

Once the selection is performed, each factor (since uncorrelated from the others) is forecast
independently by using the chosen multi-step-ahead strategy a∗. An interesting aspect of
this approach is that the complexity of the forecasting step is made independent of n.

1 In batch PCA the components are recomputed at each instant t while in incremental they are updated sequentially
(after initialization with a small data subset).
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Require: Observed matrix Y, family A of multi-step-ahead strategies, maximum number
of principal components q ≥ 1, H ≥ 1, set T of test set starting points such that
∀t ∈ T , 2

3 N < t < N − H

1: for p = 1 to q do
2: for a ∈ A do
3: for t ∈ T do
4: W = FactorEstimation(Y) ▷ Computation latent factors
5: Z = YW ▷ Factors observation matrix

▷ FactorForecast(series,a,H) return the H next steps of a series according to the strategy
a

6: {Ẑ[p]at+1, . . . , Ẑ[p]at+H} =FactorForecast({Z[p]1, . . . , Z[p]t}, a, H)
7: {Ŷa

t+1, . . . , Ŷa
t+H} = Ẑa[, 1 : p]WT[, 1 : p] ▷ Reconstruction of the original series

8: end for
9: MSE[p, a]=avgt∈T [MSE({Yt+1, . . . }, {Ŷa

t+1, . . . })] ▷ average forecasting error over all
out-of-sample test sets

10: end for
11: end for

return {k∗, a∗} = arg mink∈{1,...,q},a∈AMSE[k, a]
▷ k∗ best number of factors, a∗ best multi-step-ahead forecasting strategy

Figure 3.5: Pseudocode of the DFML automatic hyperparameter search strategy.

3.3 smurf-es : selective multivariate to univariate reduction through

feature engineering and selection

This section presents the second contribution of the thesis, denoted SMURF-ES. This strategy
adapts the conventional machine learning pipeline to the problem of multivariate and
multi-step-ahead forecasting. The SMURF-ES pipeline is composed of three main phases:
feature engineering, feature selection and forecasting.

In our solution (Figure 3.6), we employ a global approach. Whereas the DFML strategy
employs a dimensionality reduction approach, SMURF-ES relies on feature engineering and
feature selection to address the high-dimension issue.

Y[i]
Feature

Engineering
[Y[i], Y(FE,i)]

1 → cFE (> 1)

TS

Feature

Selection
Y(FS,i)

cFE → cFS

(≪ cFE) TS

Forecasting

Model
Ŷ[i]

Figure 3.6: Summary of the traditional machine learning pipeline for univariate time series forecast-
ing. Feature extraction allows to produce a multivariate series Y(FE,i) from univariate
time series Y[i], from which a subset of series Y(FS,i) is extracted via feature selection.

Unlike the DFML strategy, SMURF-ES relies on feature engineering and feature selection
to address the high-dimensionality issue (Figure 3.7). The input multivariate time series is
augmented by computing rolling statistics (rolling means, standard deviations, quantiles,
extremes) as well as expert-based, domain specific features (Section 3.3.1).
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Y[1]

Y[i]

Y[n]

Feature

Engineering
[Y[i], Y(FE,i)]

[Y[1], Y(FE,1)]

[Y[n], Y(FE,n)]

n → n · cFE

(> n) TS

FeatureSelectioni

FeatureSelection1

FeatureSelectionn

Y(FS,i)

Y(FS,1)

Y(FS,n)

n → n · cFS

(≪ n · cFE) TS

Ensemblei

Ensemble1

Ensemblen

Ŷ[i]

Ŷ[1]

Ŷ[q]

Figure 3.7: Summary of the SMURF-ES strategy for multivariate time series forecasting. A global
feature engineering process is followed by a set of local and independent pipelines
composed of Feature Selection and Ensemble Forecasting.

After this augmentation, the dimension of the input data for the forecasting model passes
from the original n variables to cFE ∗ n, where cFE is an integer coefficient representing the
number of augmented features computed for each univariate time series. Even with cFE ∼ 10,
if the dimension n of the multivariate time series is large enough, this augmentation increases
considerably the size of the problem.

For this reason, we propose a feature selection approach based on filtering, in order
to select only the relevant variables for the forecasting task at hand. This approach is
implemented locally and independently for each univariate time series, taking into account
the original input data and the corresponding augmented features. It should be noted that,
when a number cFS ∗ n of features is selected, with 1 < cFS < cFE, the dimensionality is still
increased from the original number of time series, but is considerably reduced with respect
to the output of the feature engineering step.

After this process, the selected features are given as input to the selected forecasting model.
For the forecasting step, we propose to employ an ensemble of heterogeneous forecasting
model (namely a combination of statistical and machine-learning based models).

Ensemble techniques have been proven to be effective in the domain of time series fore-
casting (Oliveira and Torgo, 2015), while heterogeneity aspect has shown to further improve
the forecasting accuracy, especially in the case of highly dynamical settings (Cerqueira et al.,
2017a; Cerqueira et al., 2017b). Moreover, (Cerqueira, Torgo, and Soares, 2019) shows that
statistical and machine-learning techniques have a complementary behavior with respect to
the size of the training set employed for the model, further highlighting the advantages of
heterogeneity.

Last but not least, it should be noted that the proposed strategy could easily employed
for both one-step-ahead forecasting, as presented in Figure 3.7, as well as for multiple-step-
ahead forecasting, by implementing the Direct, Recursive and MIMO strategies presented in
Section 2.2.1.2.

The following sections discuss the details of the different components of the forecasting
pipeline, namely:

1. Feature Engineering: this step augments the representation space by constructing a
number of additional input features capturing either the temporal dynamics of the
signal or the occurrence of specific events (e.g. curtailment).

2. Embedding strategy: the forecasting task is formulated as a supervised learning prob-
lem where the nature of the output and the dimension of the input space depend on the
horizon H, temporal lag L and the cross-series dependencies taken into account (Taieb
et al., 2012).
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3. Dimensionality reduction: this step aims to reduce the number of features, by compres-
sion (via Principal Components Analysis - PCA) or by feature selection (Section 2.4).
This process aims to contrast the curse of dimensionality (Friedman, Hastie, Tibshirani,
et al., 2001) and reduce the computational burden in model training (Bermingham
et al., 2015), by removing redundant or correlated features.

4. Model estimation: this step estimates from the available data the input-output rela-
tionship defined in the previous steps. State-of-the-art approaches are discussed in
Sections 5.3.2 and 5.4.2.

3.3.1 Feature Engineering

The feature engineering step consists in augmenting the original multivariate time series
with a set of derived time series. Among the techniques presented in Section 2.2.2.4 we
employ window-based statistics, computing conventional statistics across a time window of
the past w values. In particular, we consider:

Moving Average yt,[0,w] =
1

w + 1

w

∑
q=0

yt−q (3.12)

Maximum Value y+t = max
q∈{0,··· ,w}

yt−q (3.13)

Minimum Value y−t = min
q∈{0,··· ,w}

yt−q (3.14)

p-quantile

yp,t = inf{z : F̂w(z) ≥ p}
z ∈ {yt−0, · · · , yt−q}

F̂w(z) = 1
w ∑w

q=0 1yt−q≤z

(3.15)

1st order difference
∆yt = yt − yt−1

yt ∈ {yt−0, · · · , yt−q}
(3.16)

Moving Average
Incremental Varia-
tion

y∆ȳt ,t =
1
Q

(
yt,[0,Q−1] − yt,[Q,2(Q−1)]

)
∀t ∈ [1, N]

(3.17)

Additional features are created by computing parametric, expert-defined functions to detect
abrupt changes in the time series, e. g., the sudden change from a dynamical trend to a
constant one.

These features are constructed, respectively, using a first order difference based method,
discarding all signal variability smaller than σ (3.18), and a Run Length Encoding (RLE)
based detection, employing the auxiliary indicator function 1S(·) (3.19), discarding all the
sequences of constant values shorter than a given parameter v (3.20). Both the parameters σ

and v are externally specified.

1FOD
σ (yt) =

1 |∆yt| < σ

0 otherwise
(3.18)

1S(yt) =

1 ∆yt = 0

0 otherwise
(3.19)
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1RLE
v (yt) =


1 ∃ts > t0, ts < te < t s.t.

te − ts > v ∧ ∀i ∈ {ts · · · , te}1S(yi) = 1

0 otherwise

(3.20)

The feature engineering process augments the size of Y(N×n), where N is the available
number of samples and n is the number of time series. In particular, the total number
of time series is n′ = n · cFE where cFE = (1 + nstat · sq + n f ), with nstat being the num-
ber of statistics (3.12)-(3.15) computed for sq different lags, and n f being the number of
features (3.16)-(3.20).

Finally, the raw time series and the augmented ones are rearranged into a matrix D(N×n′),
where N and n′ denote the number of samples and variables respectively. This matrix can
be decomposed into the predictor submatrix P(N×ϕ) containing the ϕ = n · (nstat · sq + n f )

predictor time series obtained through the feature engineering procedure as columns, and
the target submatrix Y[N, n], containing the n original time series, one by column.

D =
[
Y P

]
=




y11 . . . y1n
... . . .

...

yN1 . . . yNn




p11 . . . p1ϕ
... . . .

...

pN1 . . . pNϕ


 (3.21)

This decomposition is performed in order to prepare the available data for the subsequent
embedding procedure.

3.3.2 Embedding Procedure

This step rearranges the sub-matrices Y and P in an embedded input/output form depending
on the horizon H and time lag L. The step is performed in order to frame the forecasting
problem as a supervised learning problem, and consequently be able to apply forecasting
techniques based on supervised learning (i. e., data-driven methods). More precisely, the
step produces two matrices: the input matrix XEMB and the output matrix YEMB, with the
objective of learning a multi-variate and multi-temporal model F : XEMB 7→ YEMB defining
the relation among input and output matrix.

The structure of the matrices XEMB and YEMB, whose dimensions are [N − L− H, ϕ · L]
and [N − L− H, n · H], respectively, is shown in Eq. 3.22 and 3.23.

Note that the increment in size of the two matrices is related to the values of the lag L
and the forecasting horizon H respectively, as the procedure requires to generate, for each
time series, a new variable for each considered time step, from t until t− L + 1 in the input
matrix XEMB, and from t + 1 until t + H in the output matrix YEMB.

XEMB =



p1︷ ︸︸ ︷
t− 0 t− 1 t− 2 · · · t− L + 1 · · ·

pϕ︷ ︸︸ ︷
t− 0 t− 1 t− 2 · · · t− L + 1

p11 − − · · · − · · · p1ϕ − − · · · −
p21 p11 − · · · − · · · p2ϕ p1ϕ − · · · −
p31 p21 p11 · · · − · · · p3ϕ p2ϕ p1ϕ · · · −
p41 p31 p21 · · · ... · · · p4ϕ p3ϕ p2ϕ · · · −
...

...
...

. . .
... · · · ...

...
...

. . .
...

pN1 p(N−1)1 p(N−2)1 · · · p(N+1−L)1 · · · pNϕ p(N−1)ϕ p(N−2)ϕ ... p(N+1−L)ϕ


(3.22)
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YEMB =



y1︷ ︸︸ ︷
t + 1 t + 2 t + 3 · · · t + H · · ·

yn︷ ︸︸ ︷
t + 1 t + 2 t + 3 · · · t + H

y21 y31 y41 · · · y(t+H)1 · · · y2n y3n y4n · · · y(t+H)n

y31 y41 y51 · · · ... · · · y3n y4n y5n · · · ...

y41 y51 y61 · · · ... · · · y4n y5n y6n · · · ...

y51 y61 y71 · · · ... · · · y5n y6n y7n · · · ...
...

...
...

. . .
... · · · ...

...
...

. . .
...

y(N−H)1 − − · · · − · · · y(N−H)n − − · · · −


(3.23)

Once the matrices XEMB and YEMB are available, a number V of training and test sets are
defined in order to implement a forecast evaluation procedure based on cross-validation
(Cerqueira, Torgo, and Mozetic, 2019).

In particular, for a generic case test v, the matrices X(v) and Y(v) are used to derive the
training matrices X(v)

trn , Y(v)
trn and the validation matrices X(v)

val , Y(v)
val , which are used to assess

the prediction models.

3.3.3 Dimensionality reduction

Though feature engineering and data embedding generate useful information for forecasting,
they cause a large increase in data dimension and a consequent number of drawbacks such
as curse of dimensionality, high demand of computational resources and ill-conditioning in
data analysis (Lian and Chen, 2009).

Hence, it is recommended to adopt dimensionality reduction or feature selection tech-
niques (Rong, Gong, and Gao, 2019). Dimensionality reduction techniques combine the
original features to provide a smaller number of features with enhanced predictive power
(e. g., PCA Section 2.4.1)

Feature selection aims to select a small subset of relevant features to the forecasting task
at hand in order avoid variance and instability issues in model learning (e. g., mRMR Section
2.1.4.2).

For the SMURF-ES strategy, we compared PCA and mRMR on the considered prediction task
(wind-power forecasting). Empirical tests over different datasets (Table 5.1) highlighted a
better effectiveness of mRMR over PCA (in terms of final prediction error), hence the choice of
the former as dimensionality reduction technique. Moreover, the advantage of filter-based
techniques (e. g., mRMR) compared to compression-based techniques such as PCA, is that
they do not transform the original features, but rather select a subset of them, allowing for
easier feature interpretation.

3.3.4 Model estimation

The considered preprocessing steps (i. e., feature engineering, embedding and feature
selection) allow to estimate different forecasting models, coming from both model-driven
and data-driven families (Section 2.3). It should be noted that, whereas model-driven
techniques work directly with the raw data, data-driven techniques can fully exploit the
preprocessing phase, especially profiting from the feature selection one.

In the framework of the SMURF-ES strategy, the forecasting phase is performed by using
heterogeneous ensembles (i. e., forecast combinations with models coming from the different
families). As discussed in Section 2.5, by combining models with different assumptions
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on the available data and the model to estimate, we expect to improve the forecasting
accuracy. Table 3.1 contains a summary of the different families employed for the SMURF-ES
forecasting strategies.

Model-driven Data-driven SMURF-ES Ensembles

Naive (Persistence) Feed-forward ANN Av-GBM-RF

Average GBM Av-Average-RF

Random Forest (RF) Av-GBM-Average

Lazy Learning (LL) Av-SVM-GBM

SVM Av-SVM-Average

Ad-ANN-Average

Ad-SVM-Average

Ad-GBM-Average

Ad-RF-Average

Ad-Average-RF-SVM-GBM

DAFT-E (Ad.RF-LL-Naive)

Table 3.1: Overview of the assessed models for the SMURF-ES. Av stands for an ensemble of the
proposed models based on the averaging of their forecasts, whereas Ad denotes a weighted
combination of the forecasts, inversely proportional to their forecasting error (Section 2.5).

3.3.4.1 Model-driven techniques

As for the model-driven techniques, we consider the Naive model (Section 2.3.2.1), returning
the last available value as forecast, the Average model (Section 2.3.2.2) returning a simple
moving average on the past observed values. Given their simplicity and reduced computa-
tional complexity, these techniques are employed both as ensemble components as well as
univariate reference benchmark.

3.3.4.2 Data-driven techniques

The embedding procedure (Section 3.3.2) allows to transform the forecasting task into a
supervised learning problem and consequently to adopt any kind of supervised learn-
ing algorithm. As components of the forecast combination we consider both traditional
benchmark techniques like Lazy Learning (LL) (Section 2.3.3.2), Support Vector Machines
(SVM) 2.3.3.3 and Artificial Neural Networks (ANN) (Section 2.3.3.1) as well as ensemble
techniques such as Random Forest (RF) (Section 2.3.3.5), Gradient Boosting Machine (GBM)
(Section 2.3.3.4), that have consistently appeared as top performers in several forecasting
competitions (Makridakis, Spiliotis, and Assimakopoulos, 2020a; Makridakis, Spiliotis, and
Assimakopoulos, 2020b).

3.3.4.3 SMURF-ES ensembles

State-of-the-art approaches such as RF and GBM already rely on the concept of ensemble
forecasting, where many low-correlated predictors (also called weak learners) are trained,
providing the final prediction by aggregating all model outputs. In our strategy a similar
idea is applied at a higher level by combining the forecasts of different models according to
a given combination rule (see Section 2.5).

More precisely, our proposed ensemble includes a fixed number of heterogenous forecast-
ing methods (Mendes-Moreira et al., 2012) operating in parallel, both in terms of training
and prediction phases. Their heterogeneity is motivated by the fact that each forecasting
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model relies on different base assumptions and reacts differently to changes in the input
data, such as differences in the distributions of training and validation data sets. These
differences, in turn, can dramatically change the forecasting performances of the individual
components over time.

The intuition behind our choice to employ forecast combination, is that, by choosing an
adequate and adaptive combination rule, one could be able to tune the forecast combination
in order to favor the best performing components, while discarding the worse performing
one, as time goes by.

3.3.5 Proposed implementations

3.3.5.1 DAF-E : Dynamic Adaptive Feature-based Ensemble

The first implementation of the SMURF-ES multivariate forecasting strategy employs a forecast
combination with a dynamic combination rule, based on the past forecasting error, of a set
of models employing feature engineering and selection, hence its name Dynamic Adaptive
Feature-based Ensemble (DAF-E). An overview of its main features is presented in Figure 3.8,
and is briefly discussed in the following sections.

Y[1]

Y[i]

Y[n]

Feature

Engineering:

MA, Max,

IRMA,

Quantile

[Y[i], Y(FE,i)]

[Y[1], Y(FE,1)]

[Y[n], Y(FE,n)]

n → n · cFE

(> n) TS

mRMRi

mRMR1

mRMRn

Y(FS,i)

Y(FS,1)

Y(FS,n)

n → n · cFS

(≪ n · cFE) TS

Ensemblei

Ensemble1

Ensemblen

Ŷ[i]

Ŷ[1]

Ŷ[q]

Figure 3.8: Overview of DAF-E model, based on the SMURF-ES strategy.

feature engineering Following the procedure described in Section 3.3.1 we introduce
the following additional predictors: Moving Average (Eq. 3.12), Maximum Value (Eq. 3.13),
Incremental Variation of the Moving Average (Eq. 3.17) and p-quantiles (Eq. 3.15), with
p ∈ {10%, 50%, 90%}.

The feature creation leads to the creation of a matrix P(N×ϕ), where ϕ = n ∗ (nstat · sq),
where nstat = 6 corresponds to the number of considered statistics and sq = 4 corresponds
the number of values considered for Q (here Q ∈ {6, 12, 18, 24}).

dimensionality reduction As we can observe from Table 3.2, the feature engineering
and consequent embedding process cause a considerable increase in the number of input
features to the forecasting models.

As discussed in Section 3.3.3, we employ two techniques for reducing the number of input
features: PCA (Section 2.4.1) and mRMR (Section 2.1.4.2).

For this implementation of the SMURF-ES strategy, we selected mRMR after some prelimi-
nary experiments, which have highlighted its greater predictive performance with respect
to PCA, with a number of selected variables equal to 15.

ensemble forecasting - daf-e One of the core aspects of the SMURF-ES strategy is
the usage of an ensemble technique to combine the multiple-step-ahead forecasts from
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Forecasting horizon Feature Engineering

hour
H (number of

steps ahead)

L(H)

Lag
n nstat sq ϕ

1 6 6

15 6 4

360

2 12 12 720

3 18 18 1080

4 24 24 1400

5 30 30 1720

6 36 36 2040

Table 3.2: Overview of the number of features in the matrices XEMB,YEMB as a function of the
forecasting horizon H. It is worth noting that, for all the considered forecasting horizons
H, the lag (or model order) L is identical to the forecasting horizon.

different forecasting models. Following the taxonomy presented in Section 2.5, we propose
two combinations of a fixed number of heterogeneous forecasting models.

In the DAF-E, we consider two combination rules sharing the same general formulation
(Equation 3.24): a static simple averaging (Av) and a dynamic, adaptive weighted averaging
(Ad).

ŷ(t+i) =
K

∑
k=1

w(k)
t f k

(t+i), ∀i ∈ [1, H] (3.24)

where K is the number of considered machine learning models and f j
(t+i) is the output of

the j-th model of the forecasting ensemble for the i-th step-ahead.
The simple averaging combination (Av) rule (Equation 3.25) gives the same weight to

every method composing the forecasting ensemble. Moreover, the weights do not change
over time. Despite its simplicity, such combination rule is often used as a baseline to test the
predictive performance of the forecast combination

w(j)
t =

1
K

, ∀t, ∀j (3.25)

The proposed adaptive weighted averaging (Ad), on the other hand, considers dynamical
weights, regularly adapted over time. The combination weights are computed based on
the forecasting error, more precisely the RMSE (Equation 3.26), in order to be inversely
proportional to the forecasting error (3.27). In other words, the smaller the forecasting error,
the better the performance of the ensemble component, and consequently, the higher its
weight in the ensemble. In addition, the weights are normalized, in order to be constrained
in the [0, 1] range.

RMSEj
t =

√√√√ t

∑
i=0

( f j
(t) − yi)2 (3.26)

w(j)
t =

(
RMSE(j)

t

)−1

∑K
k=1

(
RMSE(k)

t

)−1 , w(j)
t ∈ [0, 1] (3.27)
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3.3.5.2 DAFT-E: Dynamic Adaptive Feature-based Temporal Ensemble

The second implementation of the SMURF-ES multivariate forecasting strategy improves over
the first (DAF-E Section 3.3.5.1). Firstly, the feature engineering process is extended, including
also expert-based features. Secondly, the forecasting process is improved with a temporal
combination of different ensembles, on top of the one based on the previous forecast error,
hence its name Dynamic Adaptive Feature-based Temporal Ensemble (DAFT-E). An overview
of its main design choices is presented in Figure 3.9, and is briefly discussed in the following
sections.

Y[1]

Y[i]

Y[n]

Feature

Engineering:

MA, Max,

Min, p-

Quantile,

1FOD
σ ,1RLE

ν

[Y[i], Y(FE,i)]

[Y[1], Y(FE,1)]

[Y[n], Y(FE,n)]

n → cFE ∗ n

(> n) TS

mRMRi

mRMR1

mRMRn

Y(FS,i)

Y(FS,1)

Y(FS,n)

n → n · cFS

(≪ n · cFE) TS

DAFT − Ei

DAFT − E1

DAFT − En

Ŷ[i]

Ŷ[1]

Ŷ[q]

Figure 3.9: Overview of the DAFT-E forecasting model, based on the SMURF-ES strategy.

feature engineering In this implementation of the strategy, the feature space is
augmented in a two steps procedure.

First, this step augments the input space by computing window-based features (Section
2.2.2.4) across a time window of the past w values: Moving average (Eq. 3.12) Maximum
value (Eq. 3.13), Minimum value (Eq. 3.14), p-quantiles (Eq. 3.15), First order difference (Eq.
3.16)

Second, it introduces parametric, expert-based features, for example to detect the switch
from a highly dynamical trend to a constant one.

These features are constructed using a method based on first order differences discarding
all signal variability smaller than σ (3.18), and a method based on Run Length Encoding
(RLE), employing the auxiliary indicator function 1S(·) (3.19), discarding all the sequences
of constant values shorter than a given parameter v (3.20). The parameters σ and v of the
two techniques are externally specified.

dimensionality reduction As in the previous implementation of the SMURF-ES

strategy, we also consider here two techniques: a filter-based feature selection technique
mRMR (Section 2.1.4.2) and a dimensionality reduction technique PCA (Section 2.4.1). Since
filter-based techniques do not transform the original features, for the sake of interpretability,
we selected mRMR as the feature selection technique within the DAFT-E approach, whereas
PCA has been considered as a benchmark technique against which to compare our proposed
approach.

ensemble forecasting - daft-e We propose an original method, called Dynamic
Adaptive Feature-based Temporal Ensemble (DAFT-E), based on the weighted average of
M forecasting models, whose weights evolution depends on their forecasting errors over
a sliding window of size Γ and a forgetting strategy. The pseudo-code of the method is
detailed in the Algorithm 1.

The multivariate multi-step-ahead problem is decomposed in a set of F = N · H multi-
input single-output tasks by applying a direct strategy (Taieb et al., 2012) for each n-th
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Algorithm 1 DAFT-E algorithm for the k-th trial having V weight update cycles with FF
vector Λ and window size Γ

Input: M Algorithms, X(k)
trn, Y(k)

trn, X(k)
test, Λ, Γ

Output: ŶDAFT−E (DAFT-E prediction)

1: Nc ← ⌊Ntest/Γ⌋
▷ Update the weights over the time span Γ

2: for c← V to Nc do
▷ For c < V the wnorm are initialized

3: tstart ← Γ · (c− 1) + 1
4: tend ← min (Ntest, Γ · c)

▷ Compute the error for each of the M algorithms
5: for i← 1 to M do
6: Ŷ(c,i)

test ← m(k,i)(X(k)
trn, Y(k)

trn, X(k)
test[tstart : tend, ])

▷ m(k,i) produces the outputs of the ith algorithm, trained with input X(k)
trn and output Y(k)

trn on
the testing set X(k)

test

7: E(c,i) ← Ŷ(c,i)
test − Y(k)

test[tstart : tend, ]

8: E(c,i) ← ⟨E(c,i), E(c,i)⟩
▷ Update the weights for each of the F = N ∗ H maps

9: for j← 1 to F do
10: w(c,i)[j]← 1/mean(E(c,i), j)

▷ mean(E, j) computes the mean of the jth column of the E matrix
11: end for
12: end for

▷ Dynamic Adaptive Algorithm Combination
13: for j← 1 to F do
14: for i← 1 to M do

▷ Normalize weights for the jth variable
15: w(c,i)

norm[j]← w(c,i)[j]/ ∑M
i w(c,i)[j]

▷ Combine normalized weights using FF vector Λ

16: w(c,i)
norm[j]← ∑V

v=1 Λ[v]w(c−v,i)
norm [j]

17: end for
18: ŶDAFT−E[tstart : tend, j]← ∑M

i=1 w(c−1,i)
norm [j]Ŷ(c,i)

test [ , j]
19: end for

▷ Sliding window approach to keep last V weight matrices w and discard the oldest one
20: for i← 1 to M do
21: for v← 1 to V do
22: w(c−v,i)

norm ← w(c−v+1,i)
norm

23: end for
24: end for
25: end for

column of Y. Each prediction task fn,h (line 6) is addressed by M algorithms and the M
predictions are combined by weighted averaging (line 18).

Every Γ steps, the weights are returned by the inverse of the mean of the latest Γ squared
forecasting errors (line 10), then normalized (line 15) and eventually regularized (line 16).
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Note that, after performing the decomposition, each map can be learned independently of
each other, allowing for a parallel and computationally efficient learning process. Hence, the
aggregate output for each fn,h map is the weighted sum of the M internal algorithms, where
the weights are incrementally updated over the time by adopting algebraic operations and
forgetting factors.

The regularization uses a vector of V forgetting factors Λ1, . . . , ΛV satisfying 0 < Λv <

1, ∑V
v=1 Λv = 1, which quantifies the contribution of the V previous cycles.

DAFT-E controls the bias/variance trade-off of the adaptive algorithm thanks to the
hyperparameters Γ and Λv, v = 1, . . . , V. The larger Γ and the more similar the Λv values,
the higher the smoothness (and consequently the bias) of the forecast estimation. Such
dynamic regularization process allows better robustness (and then accuracy) in front of
cyclic regime changes (ramps, power generation curtailments). Given the large degree of
uncertainty of highly dynamic processes, the memory-based weight update process reduces
the sensitivity to recent noise values and decreases variance and instability. In practice, Γ
and Λv values are set by considering a grid search procedure over a training portion of the
historical series.

The DAFT-E model includes Random Forest (RF) (Liaw, Wiener, et al., 2002), Lazy
Learning (Lazy) (Bontempi, Birattari, and Bersini, 1999c), and Persistence (Naive it). These
models have been selected after a preliminary analysis due to both their low computational
burden and the good generalization performances, which were shown in different real-world
time series forecasting problems (Parmezan, Souza, and Batista, 2019). Furthermore, the ML
models are trained with different feature sets for enhancing the generalization capability of
the ensemble model. The first set, called raw, considers only features obtained from the raw
original time series (i. e., lagged historical values) whereas the second set, named all also
include the features obtained through feature engineering (and the corresponding lagged
values).

This choice reflects the well known consideration about the ML model performance,
which often depends on the considered feature sets (Domingos, 2012), even in the presence
of a feature selection technique, since the original set itself may affect the result of the feature
extraction.

Furthermore, in the presence of a high volatility and nonlinear time series sets, the decision
maker may decide to produce a smooth feature set to better catch hidden aspects in the
time series behavior. This often improves the results, but as observed from the experience,
in some cases the smooth features increase the generalization capability at the detriment of
an increasing bias. This happens because a smooth feature may result in more correlation to
a target variable, but having lesser predictive power than raw features, since a correlated
feature is not always synonym of a good predictor. In addition, the persistence model
adoption supports the other models in tail event conditions, such a quasi-constant profiles.

We expect that this increases the model generalization capability, since the final forecasting
is obtained by MSE-based weighted average considering the dynamic model performance
over time. Particularly, the weights are updated at the end of a whole forecasting horizon
span Γ = H, where the time series are processed in parallel by mRMR (De Jay et al., 2013)
by extracting a feature subsets of NS = 5 from a N′ ≈ 2000 feature set. The DAFT-E employs
V = 3 FFs, where the weight values are Λ1 = 0.5, Λ2 = 0.35, and Λ3 = 0.15. The optimal
parameters are chosen after a grid search analysis on a subset of the original data.

3.4 concluding remarks

High variate multi-step forecasting is one of the most challenging tasks in data science and
requires an extremely careful management of the bias/variance trade-off by exploring several
alternatives in series encoding and forecasting. There has been a limited focus on multivariate
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and multi-step-ahead forecasting solutions for time series problem in the scientific literature.
Most of the available solutions either tackle the multivariate aspect (e. g., Vector Auto-
Regressive (Wang, 2018) or neural-networks, both feed-forward (Chakraborty et al., 1992b)
and recurrent (Hewamalage, Bergmeir, and Bandara, 2021)), with a one-step-ahead approach,
or they focus on the multiple-step-ahead approach, but tackling one time series at the time,
in a univariate fashion (Taieb et al., 2012). At the time of writing, to the best of our
knowledge, we are not aware of any studies analyzing the performances of the different
multiple-step-ahead forecasting strategies in the multivariate case.

To bridge this gap in the literature, we propose two forecasting strategies (Figure 3.10)
based on the reduction/decomposition of a multivariate problem into simpler problems.
Given their modular nature, the two strategies can be applied, without loss of generality,
using both statistical and machine learning forecasting models.

(a) DFML strategy pseudocode. According to the algorithm chosen for the DimensionalityReduction step, the q
factors can be forecast independently (as presented) as well as jointly.

Require: Observed matrix Y, Number of factors q
Ensure: Forecast matrix Ŷ

1: Z =DimensionalityReduction(Y,q)
2: for i ∈ {1, . . . , q} do
3: Ẑi· =Forecast(Zi

·)
4: end for
5: Ŷ =DimensionalityIncrease(Ẑ)

(b) SMURF-ES strategy pseudocode. While the FeatureEngineering step is performed jointly for all the input time
series, the following steps in the procedures are performed independently for each univariate time series
Y[i].

Require: Observed matrix Y
Ensure: Forecast matrix Ŷ

1: [Y, Y(FE)] =FeatureEngineering(Y)
2: for i ∈ {1, . . . , n} do
3: Y(FS,i) =FeatureSelection([Y[i], Y(FE,i)])
4: Ŷ[i]=Forecast(Y(FS,i))
5: end for

Figure 3.10: Comparison between the two proposed methodological contributions: DFML and
SMURF-ES

The first strategy (DFML - Figure 3.10a) reduces the original large scale multivariate
problem to a smaller scale multivariate problem, via a dimensionality reduction technique.
The dimensionality reduction technique estimates a reduced number of time series (called
factors), whose dynamics is representative of that of the original forecasting problem.
The forecasting step is then performed on the reduced dimensional space, and eventually
the forecasts are transformed back into the original higher dimensional space, through
a dimensionality increase technique (inverse of the dimensionality reduction). Given its
reliance on dimensionality reduction techniques, a key assumption for the DFML strategy
is that the multivariate input time series should present a high correlation (e. g., spatial)
among the underlying individual series.
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The second strategy (SMURF-ES - Figure 3.10b), on the other hand, starts with a feature
engineering process on the multivariate data to augment the original feature space. After
this step, each time series to forecast is treated as an independent forecasting problem. First,
a feature selection process is performed in order to retain only the most relevant predictors
for the forecasting task at hand. Then, the selected features are then given as input to an
ensemble model, producing the multi-step-ahead forecast for the considered time series.
Finally, the independent univariate forecasts are put together in order to provide the desired
multivariate forecasts.

Given their characteristics we can observe that the two strategies are complementary. The
DFML is well suited for very high-dimension problems (n > 102), since the dimensionality
reduction component can effectively reduce the original problem to a low-dimensional
problem (q < 10), thus reducing of several orders of magnitude the computational cost of
the forecasting process, as well as solving some computational issues arising for certain
statistical techniques (e. g., VAR, SSA), preventing their applications. Moreover, the choice
of heterogeneous factor estimation and forecasting techniques can help addressing the
bias/variance trade-off. For instance, a non-linear recurrent factor estimation technique
could reduce bias (yet increasing variance) in case of nonlinear low noise dynamics while
more conventional statistical techniques may be effective in guaranteeing a lower variance
(at the cost of a bias increase) in noisy settings with small number of samples.

Conversely, the SMURF-ES strategy is well-suited for low-dimensional multivariate prob-
lems (n < 30), since the application of the pipeline of feature engineering, selection and
ensemble forecasting can improve the forecasting performance at the individual series level,
at the price of an increase in computational complexity (due to the feature engineering
step, increasing dimensionality and the ensembling step, requiring the training of multiple
models, potentially in parallel).

Note that in this chapter we presented only the rationale and the main components of
the two strategies. In the application of these strategies in real settings, many degrees of
freedom need to be considered. To address this issue, we analyze in detail some specific
implementations of the two strategies in the following chapters.

In Chapter 4 we assess the performance of the DFML strategy for different combinations
of dimensionality reduction and forecasting techniques (Section 4.3) and on ill-conditioned
problems (Section 4.4). We conclude the chapter with the assessment of extensions to the
basic DFML strategy (Section 4.5), on several real and synthetic datasets.

In Chapter 5 we assess the performance of two forecasting methods derived from SMURF-ES

strategy: the first one proposing an ensemble technique with an adaptive combination rule
based on past forecasting error (Section 5.3) and the second one combining an error-based
combination rule with a forgetting factor to favor most-recent values (Section 5.4), with a
focus on wind power forecasting problem on real datasets.
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Results presented in this chapter have been published in the following papers:

• Gianluca Bontempi, Yann-Aël Le Borgne, and Jacopo De Stefani (2017). “A Dynamic
Factor Machine Learning Method for Multi-Variate and Multi-Step-Ahead Forecast-
ing.” In: Proceedings of DSAA 2017, the 4th IEEE International Conference on Data Science
and Advanced Analytics 2017

• Jacopo De Stefani, Yann-Aël Le Borgne, Olivier Caelen, Dalila Hattab, and Gianluca
Bontempi (Aug. 31, 2018). “Batch and Incremental Dynamic Factor Machine Learning
for Multivariate and Multi-Step-Ahead Forecasting.” In: International Journal of Data
Science and Analytics. issn: 2364-4168. doi: 10.1007/s41060-018-0150-x. url: https:
//doi.org/10.1007/s41060-018-0150-x (visited on 09/12/2018)

• Jacopo De Stefani, Olivier Caelen, Dalila Hattab, Yann-Aël Le Borgne, and Gianluca
Bontempi (2019b). “A Multivariate and Multi-Step Ahead Machine Learning Approach
to Traditional and Cryptocurrencies Volatility Forecasting.” In: ECML PKDD 2018
Workshops - MIning DAta for financial applicationS (MIDAS 2018). Ed. by Carlos Alzate,
Anna Monreale, Livio Bioglio, Valerio Bitetta, Ilaria Bordino, Guido Caldarelli, Andrea
Ferretti, Riccardo Guidotti, Francesco Gullo, Stefano Pascolutti, Ruggero G. Pensa,
Celine Robardet, and Tiziano Squartini. Lecture Notes in Computer Science. Cham:
Springer International Publishing, pp. 7–22. isbn: 978-3-030-13463-1. doi: 10.1007/978-
3-030-13463-1_1

• Jacopo De Stefani and Gianluca Bontempi (2021b). “Factor-Based Framework for
Multivariate and Multi-Step-Ahead Forecasting of Large Scale Time Series.” In: Fron-
tiers in Big Data 4, p. 75. issn: 2624-909X. doi: 10.3389/fdata.2021.690267. url:
https://www.frontiersin.org/article/10.3389/fdata.2021.690267 (visited on
09/10/2021)

4.1 introduction

In this chapter, we focus on the assessment of the Dynamic Factor Machine Learner strategy.
The key idea of this strategy is that the multivariate problem can be decomposed into a

reduced set of univariate problems by means of a dimensionality reduction procedure. Once
the decomposition has been performed, the large scale forecasting problem is transformed
into smaller scale problems that can be tackled in a computationally efficient way. With the
solution to the smaller scale problems, a dimensionality increase procedure is performed to
obtain the solution to the original large-scale problem.

With this framework in mind, we focus on an incremental assessment of the forecasting
strategy. We start by presenting the different datasets employed for the assessment, in
Section 4.2.

Then, in Section 4.3 we perform an extensive comparison of different dimensionality
reduction techniques (both linear and non-linear) and different forecasting techniques, from
both the model-driven and data-driven families, with the aim to determine the best pairing,
for several real-life forecasting task.
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Moreover, in Section 4.4, we focus on the specific problem of volatility forecasting, high-
lighting the computational limitations of some of the state-of-the-art forecasting methods,
and showing how the DFML approach can overcome these limitations.

Finally, Section 4.5 assesses the impact of two extensions on the performance of the
basic DFML framework. The first one focuses on making the process of dimensionality
reduction incremental (or online), in order to extend the applicability of the proposed
strategy to streaming settings. The second one introduces an automatic hyperparameter
selection, jointly providing the optimal parameters for both the dimensionality reduction
and the forecasting component, with the aim of simplify the usage of the DFML strategy as
forecasting solution.

Section 4.6 concludes the chapter summarizing the main findings from the assessment
and outlining some perspectives for future research studies.

4.2 datasets

For our studies, we consider a set of publicly available datasets related to multivariate
forecasting problems with high dimensionality (> 102 variables and > 103 samples) coming
from different domains ranging from finance, to mobility and climate science. In addition,
we employ a synthetic dataset in order to control the number of generated samples and
variables in order to be able to perform scalability tests. Table 4.1 contains an overview of
the different datasets and the corresponding empirical assessments, while the details of the
different datasets and associated data sources are presented in the remainder of the section.

4.2.1 Electricity consumption

This dataset 1 contains 26304 samples of 321 variables. Each variable represents the hourly
electricity consumption in KWh of 321 clients between 2012 and 2014 (Lai et al., 2018). This
dataset has been obtained by preprocessing the original dataset (NREL, 2021) in order to
remove null time series and to resample the original data (with a sampling of 15 minutes)
to have an hourly frequency.

4.2.2 Traffic usage

This dataset 2 contains 17544 samples of 862 variables, representing 48 months of hourly
data from the California Department of Transportation (Lai et al., 2018). Each variable
measures the road occupancy rates (between 0 and 1) returned by sensors monitoring the
San Francisco Bay area freeways during 2015-2016 (California Departement of Transport,
2021).

4.2.3 OBU Mobility data

This dataset 3 contains 1416 samples of 389 variables. Each variable represents the average
hourly occupancy (measured by the number of trucks) of a street in the Brussels region. The
original dataset (Bruxelles Mobilité and Machine Learning Group - ULB, 2021) has been
preprocessed in order to remove the variables with variance smaller than 0.2, thus reducing

1 The dataset is available at https://github.com/laiguokun/ multivariate-time-series-data.
2 The dataset is available at https://github.com/laiguokun/ multivariate-time-series-data.
3 The dataset is available at https://www.kaggle.com/giobbu/belgium-obu.
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Assessment Dataset N n

Factor estimation and
forecasting

Electricity 26304 321

Traffic 17544 862

OBU Mobility
Data

1416 389

Volatility forecasting
CAC40 1645 40

Cryptocurrencies 495 291

Automatic
hyperparameter search
and iterative factor
estimation

Synthetic 1500 20, 50, 100, 200,
400, 1000

Earth Surface
Temperature

1625 100, 200

Volatility 1489 40

Table 4.1: Summary of the different datasets employed for the assessment of the DFML strategy.

the number of variables from 4529 to 388.

4.2.4 CAC40

The available data consists of 1645 data points representing the stock market valuation of
the 40 companies composing the French stock market index CAC40 from 02/01/2012 to
08/06/2018 (approximately 6 years and 5 months) in Opening High Low Closing (Price
Data) (OHLC) format. The OHLC data is processed in order to compute the following volatility
proxies: σ0, σ4, σ6, σSD,5, σSD,10, σSD,21 (see Appendix A for the proxy definitions). In addition
to the proxies, we include also the continuously compounded return and the volume variable
(representing the number of trades in given trading day).

4.2.5 Cryptocurrencies

The available data comes from the Kaggle dataset "Every Cryptocurrency Daily Market
Price" 4 constitued of 785,024 observation of 1644 different cryptotokens from 28/04/2013

to 06/06/2018. However the number of available datapoints per cryptotoken is inversely
proportional to the lifespan of the token itself. In other words, the further we go into the
past, the fewer values we have for our analysis, as depicted in Figure 4.1. For these reasons,
we restricted our analysis to the period from 28/01/2017 to 06/06/2018 (495 data points)
for which we have complete OHLC data for 291 tokens. The OHLC data is processed in order
to compute the following volatility proxies: σ0

t , σ4
t , σ6

t , σSD,5
t , σSD,10

t , σSD,21
t (see Appendix A -

Section A.2 for the proxy definitions).

4.2.6 Synthetic cross-sectional and temporal time series

We simulated 14 multivariate stochastic processes with cross-sectional and temporal depen-
dencies 5 . In order to define such processes, we adapted 12 NARX processes available in
literature (Bontempi, 2014) by adding cross-sectional dependencies (Table 4.2). This was

4 The dataset is available at https://www.kaggle.com/ jessevent/all-crypto-currencies
5 The dataset is available at https://github.com/gbonte/panel/tree/master/data
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Figure 4.1: Number of available datapoints for the Cryptocurrencies dataset as a function of time

made by defining for each univariate component Y[j], j = 1, . . . , n a set Nj of neighboring
series on which it depends. The dependance is obtained by making Yt+1[j] dependent on
the average of the lagged values of the neighbouring series

Ȳt[Nj] =
∑k∈Nj

Yt[k]

|Nj|
, i = 1, . . . , n

where |Nj| is the size of Nj. We considered a number of forecasting horizons H ∈ {5, 10, 20}
and we took |Nj| = 4. From each stochastic process we generated a number of multivariate
time series of size N = 1500. Each series differs in terms of the number of components
(n ∈ {20, 50, 100, 200, 400, 1000}) and standard deviations σw ∈ {0.1, 0.2, 0.3} of the Gaussian
noise term. Some series are obtained by n replicates of the same stochastic process, with
different initial conditions and independent noise terms. Some are obtained by mixing
different stochastic processes.

4.2.7 Earth Surface Temperature series

We considered the Earth Surface Temperature series 6 made available by Berkeley Earth in
a Kaggle dataset. We focused on the monthly GlobalLandTemperatures ByCountry dataset
from which we derived two multivariate spatio-temporal series of size N = 1625. The two
series refer to the temperature evolution in the n countries having the largest number of
contiguous measures (n = 100 and n = 200, respectively). In the experiments we considered
the forecasting horizons H ∈ {2, 5, 10, 20, 50}.

6 The dataset is available at http://berkeleyearth.org/data/ and http://www.kaggle.com/berkeleyearth/climate-
change-earth-surface-temperature-data.
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Yt+1[j] =− 0.4
(3− Ȳt[Nj]

2)

(1 + Ȳt[Nj]2)
+ 0.6

3− (Ȳt−1[Nj]− 0.5)3

1 + (Ȳt−1[Nj]− 0.5)4 + Wt+1[j]

Yt+1[j] =(0.4− 2 exp(−50Ȳt−5[Nj]
2))Ȳt−5[Nj]+

(0.5− 0.5 exp(−50Ȳt−9[Nj]
2))Ȳt−9[Nj] + Wt+1[j]

Yt+1[j] =(0.4− 2 cos(40Ȳt−5[Nj]) exp(−30Ȳt−5[Nj]
2))Ȳt−5[Nj]+

(0.5− 0.5 exp(−50Ȳt−9[Nj]
2))Ȳt−9[Nj] + Wt+1[j]

Yt+1[j] =2 exp(−0.1Ȳt[Nj]
2)Ȳt[Nj]− exp(−0.1Ȳt−1[Nj]

2)Ȳt−1[Nj] + Wt+1[j]

Yt+1[j] =− 2Ȳt[Nj]I(Ȳt[Nj] < 0) + 0.4Ȳt[Nj]I(Ȳt[Nj] < 0) + Wt+1[j]

Yt+1[j] =0.8 log(1 + 3Ȳt[Nj]
2)− 0.6 log(1 + 3Ȳt−2[Nj]

2) + Wt+1[j]

Yt+1[j] =1.5 sin(π/2Ȳt−1[Nj])− sin(π/2Ȳt−2[Nj]) + Wt+1[j]

Yt+1[j] =(0.5− 1.1 exp(−50Ȳt[Nj]
2))Ȳt[Nj]+

(0.3− 0.5 exp(−50Ȳt−2[Nj]
2))Ȳt−2[Nj] + Wt+1[j]

Yt+1[j] =0.3Ȳt[Nj] + 0.6Ȳt−1[Nj] +
(0.1− 0.9Ȳt[Nj] + 0.8Ȳt−1[Nj])

(1 + exp(−10Ȳt[Nj]))
+ Wt+1[j]

Yt+1[j] =sign(Ȳt[Nj]) + Wt+1[j]

Yt+1[j] =0.8Ȳt[Nj]−
0.8Ȳt[Nj]

(1 + exp(−10Ȳt[Nj]))
+ Wt+1[j]

Yt+1[j] =0.3Ȳt[Nj] + 0.6Ȳt−1[Nj] +
(0.1− 0.9Ȳt[Nj] + 0.8Ȳt−1[Nj])

(1 + exp(−10Ȳt[Nj]))
+ Wt+1[j]

Table 4.2: Cross-sectional and temporal series: Nj denotes the indices of the set of time series which
are neighbors of the jth component. Ȳt[Nj] stands for the average of the value of the
neighboring series at time t. The covariance matrix of the Gaussian noise vector W is
diagonal.

4.2.8 Volatility series

This dataset 7 consists of 7 multivariate volatility proxies derived from the 40 series of the
French stock market index CAC40 in the period ranging from 05-01-2009 to 22-10-2014

(almost 6 years). Original data contains N = 1489 OHLC and Volume samples for each time
series. Note that, although they are derived from the same raw data, this dataset differs
from the one discussed in Section 4.2.4 by the reduced number of chosen samples, as well as
a different number of considered volatility proxies. Here, we considered the following daily
proxies available in the literature: σ0

t and the six proxies denoted by σi
t , i = 1, . . . , 6. For a

more detailed analysis and discussion concerning the volatility proxies and their definitions
we refer the interested reader to Appendix A, more precisely Section A.1.

4.3 factor estimation and forecasting assessment

The experimental study assesses and compares several implementations of the DFML,
composing the different factor estimation techniques and factor forecasting techniques
discussed in Section 3.2. Note, that for the sake of a robust assessment, we set the lag to
m = 3 and the number of latent factors to q = 3 for all the considered methods. In order

7 The dataset is available at https://github.com/gbonte/panel/tree/master/data
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to improve the readability of the results, we employ the following naming convention: the
prefix DF is used to indicate a dynamic factor based model, whereas the UNI prefix is used
to indicate the benchmark, univariate methods used for comparison. In both cases, the prefix
is followed by the name of the employed forecasting technique.

4.3.1 Benchmarks

The majority of benchmark techniques used in this assessment is based on a univariate
decomposition of the original n-dimensional MIMO task into n SISO forecasting tasks. The
motivation of this choice is twofold. On one hand, several forecasting competitions based on
real data clearly showed the competitiveness of these approaches, despite their simplicity
(Hyndman, 2020). On the other hand, for several state-of-the-art multivariate techniques a
MIMO implementation is either unavailable or computationally intractable due to a large
number of variables (e.g. VAR) or the computational cost (e.g. deep learning based methods).
Besides the Exponential Smoothing (UNI-ES), the Theta (UNI-Theta) and the Combined
(UNI-Comb) we consider the Naive model (Section 2.3.4.1). Despite its trivial nature, in real-
world tasks the Naive method is known to outperform more complex learning strategies,
especially in presence of continuous sequences of constant values: for that reason it is
considered as a baseline to normalize all our accuracy results in Section 4.3. The methods
above are implemented with the code provided for the M4 competition (Center, 2020).

The other multivariate benchmarks are the original Dynamic Factor Model (Forni et al.,
2005) (DFM, here DF-PCA-VAR) and the original DFML (Bontempi, Le Borgne, and De
Stefani, 2017; De Stefani et al., 2018) (DFMLPC, here DF-PCA-Lazy-DIR and DFMLA, here
DF-Base-Lazy-DIR).

4.3.1.1 Considered DFML variants

We test 5 different factor estimations techniques and 9 different factor forecasting techniques,
for a total of 45 different models. The factor estimation techniques are listed below together
with the software used for the experiments.

• PCA: the mathematical formulation is described in Section 2.4.1, while the implemen-
tation uses the basic R functions cov and eigen.

• Base: the base autoencoder (Section 2.4.2), is implemented by the rstudio/keras

library. The architecture is symmetric with a single hidden layer of size q and a ReLU
and sigmoid activation functions are used for the hidden and output layer, respectively.

• Deep: the deep autoencoder (Section 2.4.2) is implemented by the rstudio/keras

library. The architecture is symmetric with three hidden layers (with sizes (10, 5, q)), a
ReLU activation function for the hidden layer and a sigmoid for the output layer.

• LSTM: The LSTM autoencoder (Section 2.4.3) is implemented by the rstudio/keras

library. The architecture is symmetric with a single hidden layer (q LSTM cells) and a
ReLU and a sigmoid activation functions for the hidden and output layer, respectively.

• GRU: The GRU autoencoder (Section 2.4.3) is implemented by the rstudio/keras

library. The architecture is symmetric with a single hidden layer (q GRU cells) and a
ReLU and a sigmoid activation function for the hidden and the output layer, respec-
tively.

For all the neural-based techniques, the maximum number of epochs used for the training
is set to 50. The factor forecasting techniques are listed below together with the software
used for the experiments.
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• Naive, ES, Theta, Comb: their model formulation is discussed, respectively in Sections
2.3.2.1, 2.3.2.3, 2.3.2.4, 2.3.2.4. We employ the implementations made available by
the M4 competition (Center, 2020). The multi-step-ahead forecast is obtained with a
Recursive strategy (Section 2.2.3.2).

• VAR: the model formulation is discussed in Section 2.3.4.3, while the implementation
is provided by the vars R library and a Recursive strategy (Section 2.2.3.2) returns the
multi-step-ahead forecast.

• Lazy-DIR, Lazy-REC, MIMO: these methods denote the lazy learning (Section 2.3.3.2)
with a Direct (Section 2.2.3.2), Recursive (Section 2.2.3.2) and Joint multi-step-ahead
forecasting strategy, respectively. The implementation is made available in the Github li-
brary gbonte/gbcode by the multisteapAhead function with methods lazydir,lazyiter,mimo
respectively.

• LightGBM-DIR and LightGBM-REC: these methods denote a gradient boosting tech-
nique (Section 2.3.3.4), whose implementation is provided by the lightgbm R library.
The Direct and Recursive strategies for multi-step-ahead forecasting have been imple-
mented by the authors.

Unless specified otherwise, we employed the default values for the forecasting techniques
hyperparameters in the experiments. The entire code used to run the experiments is available
in (De Stefani and Bontempi, 2021a).

4.3.2 Experimental setup and results presentation

We consider a rolling window approach (Tashman, 2000) using a window size of wtr

multivariate samples for training, and H ∈ {4, 6, 12, 24} multivariate samples for validation.
The window size wtr is set to 2000 samples for the Electricity (Section 4.2.1) and Traffic
(Section 4.2.2) datasets, while for the Mobility dataset (Section 4.2.3), the window size is
400 in order to ensure the feasibility of the rolling approach. It should be noted that this
evaluation technique, proposed in (Tashman, 2000) consists of an extension of the well-known
cross-validation principle for time-dependent data. All the time series are preprocessed via a
z-score normalization (using the scale R function) and first-order differentiation to de-trend
the data. For each window, a multivariate error measure, the Naive Normalized Mean
Squared Error (NMMSE - Eq. 2.28) is computed using the MEMTS package. The statistical
significance of the results is assessed via a Friedman statistical test (with post-hoc Nemenyi
test - Section 2.2.3.4). In the results visualization, the methods are ordered according to their
performance from left to right (the leftmost the best), while the black bar connects methods
that are not significantly different (at p = 0.05).

4.3.3 Mobility

Figure 4.2 shows the overall ranking and the corresponding critical distance according to a
Friedman-Nemenyi test (Demšar, 2006). Tables 4.3 and 4.4 report the average NNMSE for
different horizons and groups of methods.

From the analysis of the results we can derive the following considerations:

• Statistical techniques for factor forecasting (DF-Stat methods) appear among the top
10 methods (Figure 4.2).

• Across all the horizons, the non-linear autoencoders (Base, Deep, LSTM, GRU) consis-
tently outperform linear factor estimation techniques (PCA). Also, apart from the top
two methods, the differences are rarely statistically significant (Figure 4.2).

[ February 19, 2022 at 15:43 – classicthesis v4.6 ]



94 dfml - experimental assessment

Figure 4.2: Mobility - Graphical representation according to (Demšar, 2006) of the results of Friedman
statistical test (with post-hoc Nemenyi test) comparing the NNMSE of the best 20 methods
against each other, aggregated across all horizons h. The methods are ordered according
to their performance from left to right (the leftmost the best), while the black bar connects
methods that are not significantly different (at p = 0.05).

• DFML strategies consistently outperform the Naive baseline for different horizons
(Tables 4.3 and 4.4).

• The superiority of DFML over UNI-STAT methods (UNI-ES, UNI-Theta, UNI-Comb)
is less clear-cut. Taking into considerations all horizons DFML is significantly better
than UNI-STAT: nevertheless for large horizons, the accuracy of UNI-STAT and DFML
techniques (both DF-Stat and DF-ML) tend to converge.

4.3.4 Electricity

Tables B.1 and B.2 report the NNMSE, averaged over all the tests sets. Figure B.4 shows
the ranking and the corresponding critical distance according to a Friedman-Nemenyi test
(Demšar, 2006).

On the basis of the results we can make the following considerations:

• Across all the horizons, DFML with non-linear autoencoders (Base, Deep, LSTM, GRU)
is generally among the best methods (cf. Figure B.4). However, some specific factor
estimation/forecasting pairs are consistently among the top performers (DF-PCA-
{LAZY-DIR,LAZY-REC,MIMO} Bontempi, Le Borgne, and De Stefani, 2017; De Stefani
et al., 2018).

• Apart from two combinations based on direct gradient boosting, the top 20s only
includes lazy techniques (in the top 10s) and VAR (in the bottom 10s) (Figure B.4).
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H=4 H=6

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat

DF-ES 0.554 0.5477 0.5445 0.5583 0.5475 0.5835 0.5786 0.5767 0.596 0.5764

DF-Theta 0.5541 0.5486 0.5445 0.5582 0.5475 0.5835 0.5789 0.5767 0.596 0.5764

DF-Combined 0.5542 0.5481 0.5448 0.5555 0.5472 0.5837 0.5789 0.5766 0.5961 0.576

DF-VAR 0.5514 0.5448 0.5515 0.5467 0.548 0.5789 0.5777 0.5777 0.5795 0.5768

DF-ML

DF-Lazy-DIR 0.5435 0.5471 0.5491 0.6037 0.5454 0.5773 0.5783 0.5765 0.6605 0.6161

DF-Lazy-REC 0.5481 0.5479 0.549 0.609 0.5431 0.5793 0.5785 0.5765 0.6868 0.5748

DF-MIMO 0.5546 0.547 0.5514 0.6197 0.5383 0.6001 0.5784 0.5764 0.6422 0.633

DF-LightGBM-DIR 0.5705 0.5558 0.5489 0.543 0.5506 0.6025 0.5813 0.5816 0.5872 0.577

DF-LightGBM-REC 0.5848 0.5465 0.551 0.5855 0.5491 0.6233 0.5834 0.6039 0.617 0.5796

UNI-Stat

UNI-Naive 1 1 1 1 1 1 1 1 1 1

UNI-ES 0.5494 0.5494 0.5494 0.5494 0.5494 0.5776 0.5776 0.5776 0.5776 0.5776

UNI-Theta 0.5494 0.5494 0.5494 0.5494 0.5494 0.5776 0.5776 0.5776 0.5776 0.5776

UNI-Comb 0.5519 0.5519 0.5519 0.5519 0.5519 0.5794 0.5794 0.5794 0.5794 0.5794

Table 4.3: Mobility Naive Normalized MSE for H ∈ {4, 6}. The content of the cell cij represents the
model using the jth dimensionality reduction technique with the ith forecasting method.
The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the
proposed method outperforms the Naive method. Bold text denotes the best configuration
for the given horizon H.

• DFML techniques generally outperform the Naive technique and the other univariate
benchmarks (UNI-ES, UNI-Theta, UNI-Comb), also for longer horizons. The only ex-
ception is represented by the integration of recurrent autoencoders (LSTM, GRU) with
statistical techniques (DF-Stat) which performs worse than the UNI-Stat benchmarks
(Tables B.1 and B.2).

4.3.5 Traffic

Tables B.3 and B.4 report the NNMSE, averaged over all the tests sets. Figure B.5 shows
the ranking and the corresponding critical distance according to a Friedman-Nemenyi test
(Demšar, 2006).

From the analysis of the results we can make the following considerations:

• The main characteristic among the techniques outperforming the univariate bench-
marks is the use of a lazy learning technique (either with the Direct (LAZY-DIR) or
the Joint (MIMO) strategy) (Figure B.5).

• Another recurring forecasting technique in the top 20s is the VAR, in combination with
both linear and nonlinear dimensionality reduction techniques (Figure B.5).

• DFML strategies consistently outperform the Naive baseline (Tables B.3 and B.4).

• The combination of lazy learning with a recursive technique and recurrent autoencoder
tends to produce abnormal values, probably due to error propagation or vanishing/-
exploding gradients problems (Table B.4).
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H=12 H=24

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat

DF-ES 0.6487 0.6427 0.6336 0.6666 0.6349 0.8048 0.8005 0.8017 0.8007 0.7986

DF-Theta 0.6487 0.6426 0.6336 0.6666 0.635 0.8048 0.8005 0.8017 0.8007 0.7987

DF-Combined 0.649 0.6428 0.6336 0.6685 0.635 0.8048 0.8005 0.8017 0.803 0.7986

DF-VAR 0.6343 0.6359 0.6336 0.6392 0.6334 0.7996 0.7999 0.7992 0.7992 0.799

DF-ML

DF-Lazy-DIR 0.6282 0.6334 0.6335 0.7084 0.6345 0.7983 0.7998 0.7987 0.8078 0.7994

DF-Lazy-REC 0.6822 0.6335 0.6328 0.7237 0.634 0.8417 0.7999 0.7997 0.8291 0.7983

DF-MIMO 0.6558 0.6339 0.6369 0.6928 0.6431 0.8079 0.7995 0.7997 0.8086 0.8014

DF-LightGBM-DIR 0.6794 0.6399 0.6352 0.6741 0.6348 0.796 0.7992 0.7979 0.7955 0.7957

DF-LightGBM-REC 0.6798 0.6336 0.6341 0.7254 0.6375 0.8335 0.7993 0.7996 0.8296 0.7967

UNI-Stat

UNI-Naive 1 1 1 1 1 1 1 1 1 1

UNI-ES 0.6334 0.6334 0.6334 0.6334 0.6334 0.7994 0.7994 0.7994 0.7994 0.7994

UNI-Theta 0.6335 0.6335 0.6335 0.6335 0.6335 0.7993 0.7993 0.7993 0.7993 0.7993

UNI-Comb 0.6346 0.6346 0.6346 0.6346 0.6346 0.7997 0.7997 0.7997 0.7997 0.7997

Table 4.4: Mobility Naive Normalized MSE for H ∈ {12, 24}. The content of the cell cij represents the
model using the jth dimensionality reduction technique with the ith forecasting method.
The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the
proposed method outperforms the Naive method. Bold text denotes the best configuration
for the given horizon H.

4.3.6 Computational time

The total computational time (in seconds) of the different DFML techniques is represented
in Figures 4.3 and 4.4, representing respectively, the computational time of the shortest and
longest horizon for the dataset having the largest scale (i.e. Traffic). The total computational
time includes the time required to train the factor estimation technique and the factor
forecasting technique, as well as the time required to generate the forecasts. It should be
noted that, while the time required to estimate the factors varies according to the selected
techniques, the time allocated to factor forecasting (for a given method) is constant across
the different factor estimation techniques, as they employ the same number of components,
and therefore the same amount of data. As we can observe in the figure, the majority of
the computational time is allocated to the factor estimation technique, with the differences
between factor forecasting techniques being negligible (smaller than 1s). The only exception
is represented by the LightGBM-DIR technique, where the increase in computational time
is justified by the number of models to be trained which is proportional to the forecasting
horizon H. The fastest technique in terms of computational time is the PCA, while the
recurrent based-autoencoder (GRU and LSTM) are the slowest ones. It should be noted that,
with the selected number of epochs, the upper bound for all the variants of the DFML is
around 75s (Figure 4.4).

4.3.7 Discussion

The idea of employing neural components in the framework of a dynamic factor model has
already been tested by (Nakagawa et al., 2019) for a MISO one-step-ahead prediction of the
returns in the Japanese stock market and by (Kim et al., 2019) in the framework of generative
modeling for image reconstruction. However, at the time of our first DFML publication, to
the best of our knowledge, we are not aware of any study implementing neural components
in the framework of dynamic factor model for multivariate and multistep ahead forecasting.
An additional contribution is constituted by the extensive study, on multiple real datasets,
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Figure 4.3: Traffic - Boxplots representing the distribution of the computational time (in s) across
the different rolling windows for the shortest horizon (H = 4). Each column in the grid
represents a different factor estimation technique.

of the different compositions of linear and non-linear factor estimation techniques as well as
model-driven and data-driven factor forecasting techniques. We can summarize the findings
from our experiments with the following considerations:

• About the choice of a factor estimation technique in DFML: linear techniques seem to be
the most promising ones, both in terms of forecasting accuracy and computational
cost (Figures B.4, B.5, 4.3, 4.4). Non-linear techniques both with and without recurrent
components are comparable in terms of accuracy: nevertheless, the trade-off between
the increase in accuracy and the overhead in terms of computational cost (and the
consequent energetic overhead) needs to be carefully taken into account.

• About the choice of a factor forecasting technique in DFML: there is no clear winner be-
tween model-driven and data-driven techniques. However, two forecasting techniques:
VAR (model-driven) and lazy learning (data-driven) appear to be consistently in the
top performers across different datasets (Figures B.4 and B.5).

• About the choice of a multi-step-ahead forecasting strategy in DFML: the Direct (DIR) and
Joint (MIMO) strategies consistently outperform the recurrent strategies, confirming
the findings of (Bontempi and Ben Taieb, 2011) and (Taieb, 2014) (Figures B.4 and B.5).

• In the majority of the experiments, the DFML is significantly more accurate than the
classical DFM (DF-PCA-VAR)), the Naive baseline and the univariate benchmarks
(Figures 4.2, B.4). Note that outperforming a Naive baseline is not absolutely obvious
in multivariate multi-step forecasting as discussed in publications like (Paldino et al.,
2021).

• Last but not least, depending on the type of forecasting problem (cf. Section 4.3.5),
univariate factor forecasting techniques still represent a competitive alternative to
more complex models (Tables 4.3, 4.4, B.3, B.4).

Further experiments are foreseen to understand the impact of hyperparameters like the
number of components q or the embedding order of the machine learning models m. In
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Figure 4.4: Traffic - Boxplots representing the distribution of the computational time (in s) across
the different rolling window for the longest horizon (H = 24). Each column in the grid
represents a different factor estimation technique.

addition, the choice of a problem specific neural network architecture, fine-tuning of the
parameters, as well as longer training times could further improve the performances of the
neural-based techniques, if the problem setting allows it.
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4.4 volatility forecasting

This section focus on the comparison of the performances of the DFML framework on two
settings: a well-conditioned (n << N) and an ill-conditioned (n ∼ N) forecasting setting.

The well-conditioned forecasting setting is represented by the CAC40 dataset, presented
in Section 4.2.4, where the 40 stocks composing the CAC40 market index have to be
forecast, given 1645 available daily data samples, while the ill-posed forecasting problem
is represented by the Cryptocurrency dataset, presented in Section 4.2.5, where after pre-
processing, the problem is presented with high dimensionality (n > 102) and a reduced
number of samples (N = 495). Even though this combination of high dimensionality and
reduced data availability is particularly challenging for some of the considered multivariate
benchmark techniques (i.e. VAR, DSE, SSA), relying on matrix decomposition techniques for
parameters estimation, sometimes even preventing a successful parameter estimation, the
modular architecture of the DFML, in combination with different linear/non-linear factor
estimation techniques still allows the problem to be computationally tractable.

4.4.1 Benchmarks

The experimental study assessed and compared several multivariate forecasting methods,
both local and global. The methods are listed below together with the software used for the
experiments. Note that, for the sake of assessment, we set the lag m = 2 and the maximum
number of latent factors to q = 3 for all methods, unless specified otherwise.

1. Naive: univariate baseline method (Section 2.3.2.1) using the last observed value for
each time series as prediction for the following H steps.

2. UNI: univariate multi-step-ahead Direct forecasting Bontempi and Ben Taieb, 2011 of
each individual series with a feature selection process based on correlation.

3. PLS: partial-least-squares forecasting (Section 2.3.4.4) implemented by the function
mvr of the R package pls. The optimal values for the size of the input space and the
number of principal components q is determined through an out-of-sample criterion.

4. RNN: recurrent neural network (Section 2.3.5.1) implemented by the keras_predict

function of kerasR, the R keras interface to the keras Deep Learning library for Theano.
The network is a fully-connected RNN with 10 hidden units. Since an automated setting
of the number of units would not have been feasible due to an excessive computational
time, this number has been set on the basis of trial and error over a small number of
synthetic series.

5. LSTM: As RNN, the model is a fully connected RNN, with 10 hidden units imple-
mented using kerasR. It differs from RNN as it employs LSTM cells (Hochreiter and
Schmidhuber, 1997) in the hidden layer, instead of regular neurons.

6. DFM: linear DFM where PCA is used for factor estimation, the number of factors is set
to q and the forecasting of the factors is carried out with a VAR method implemented
by the estBlackBox function of the R package dse. The batch PCA is computed using
the base R eigen function.

7. DFMLPCA: DFML framework where PCA is used for factor estimation, the number of
factors is set to q and the forecasting of each factors is carried out independently in a
univariate fashion using a local learning predictor (lazy learning (Bontempi and Ben
Taieb, 2011)) and a multi-step-ahead Direct strategy.
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8. DFMLA: Similar configuration as DFMLPCA with the use of a feed-forward autoencoder
instead of PCA in the process of factor estimation.

9. DFML’PCA: Similar configuration as DFMLPCA with the addition of the automatic
selection strategy (described in (Bontempi, Le Borgne, and De Stefani, 2017)): the
number of factors (in the range [1, q]) and the multi-step-ahead strategy (among Direct,
Iterated and MIMO) and the lag m are selected by an out-of-sample strategy carried
out on the training set.

4.4.2 Experimental setup and results presentation

For each multivariate dataset we performed time series cross-validation following a rolling
origin strategy (Tashman, 2000). The size of the training set is 2N/3 and a sequence of 50

different test sets of length H is considered. For each test set, all methods are assessed in
terms of the average Normalized Mean Squared Error (Eq. 2.28)

We focus on two measures to benchmark our methods: forecasting accuracy and computa-
tional time. The accuracy is presented in a tabular form (Table 4.6, 4.5), comparing the DFML

framework with statistical benchmark techniques (Naive, UNI, PLS, first three columns) and
representation learning based benchmark techniques (LSTM and RNN, last two columns),
across different forecasting horizons H and different datasets corresponding to the different
volatility proxies (σ0, σ4, σ6, σSD,5, σSD,10, σSD,21, cf. Section A.1), in terms of NMSE. The
computational time is presented graphically (Figure 4.5), plotting the computational time of
model training and forecast, as a function of the chosen forecasting horizon, across the two
considered case studies: CAC40 (a) and Cryptocurrencies (b).

4.4.3 Cryptocurrencies

While dealing with high dimensionality (n = 291) coupled with a relatively low number
of observations (N = 495), as in the case of the Cryptocurrency dataset (Table 4.5), using
the σi

t family of proxies, the DFML, even without hyperparameter optimisation, clearly
outperforms all the concurrent methods. It should also be noted that some methods tested in
the original DFML paper ((Bontempi, Le Borgne, and De Stefani, 2017)) (i.e. VAR, DSE, SSA)
could not be tested due to numerical problems related to the limited number of available
observations. The performances of DFML are mitigated while using proxies coming from
the σSD,w

t family, where the performance of the Naive method improves, even for forecasting
horizons up to 20 steps ahead, as the smoothing provided by the window size parameter w
increases. In both the cases, a linear dimensionality reduction technique with no optimization
(DFM, DFMLPCA) is shown to improve the performances of the forecaster, compared to
nonlinear (DFMLA) and optimized (DFML’PCA) ones.

4.4.4 CAC40

A similar ranking among the methods is observed in the case of the CAC40 dataset (Table
4.6), characterized by a lower dimensionality (n = 40) but an higher number of points
(N = 1641). Here we can observe a generally higher average normalized NMSE, indicating
a higher complexity of the forecasting problem. For the σi

t family, PLS and DFM appear as
competitive alternatives of the DFML, especially for longer horizons (H > 15). As in the
previous case, for the σSD,w

t family of proxies, the performances of the DFML family are
affected by the value of the smoothing factor w, where, the higher the smoothing factor is,
the less effective the DFML becomes for shorter horizons, with the Naive method becoming
the best one, while still maintaining good forecasting accuracy for longer horizons.
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Figure 4.5: Total computational time (model training + forecast) of the tested methods on the CAC40

- σ4 (a) (n = 40) and Cryptocurrencies - σ4 (b) (n = 291) dataset-proxy combination.
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Dataset H Naive UNI PLS DFM DFMLA DFMLPCA DFML′PCA LSTM RNN

σ0
t

2 0.988 0.660 0.630 0.595 0.631 0.594 0.596 0.630 0.670

5 0.982 0.646 0.613 0.579 0.613 0.576 0.588 0.605 0.656

10 1.042 0.608 0.581 0.543 0.575 0.539 0.538 0.570 0.615

15 1.172 0.602 0.584 0.540 0.569 0.537 0.547 0.563 0.599

20 1.247 0.579 0.555 0.515 0.544 0.512 0.514 0.540 0.593

50 1.024 0.517 0.503 0.451 0.483 0.451 0.466 0.479 0.521

σ4
t

2 0.831 0.607 0.602 0.540 0.611 0.528 0.543 0.585 0.647

5 0.816 0.598 0.585 0.521 0.580 0.510 0.522 0.559 0.638

10 0.945 0.582 0.579 0.505 0.564 0.491 0.494 0.542 0.590

15 0.924 0.582 0.592 0.508 0.565 0.495 0.498 0.551 0.580

20 1.061 0.578 0.584 0.501 0.554 0.489 10.969 0.539 0.575

50 0.950 0.553 0.563 0.474 0.524 0.472 0.476 0.510 0.543

σ6
t

2 0.946 0.587 0.588 0.528 0.580 0.512 0.527 0.547 0.613

5 1.103 0.561 0.578 0.507 0.551 0.479 0.480 0.531 0.587

10 1.101 0.583 0.590 0.516 0.579 0.499 0.500 0.553 0.591

15 1.041 0.592 0.616 0.525 0.574 0.505 0.509 0.554 0.591

20 1.000 0.589 0.592 0.522 0.568 0.507 0.509 0.551 0.586

50 1.185 0.557 0.582 0.481 0.530 0.481 0.474 0.514 0.560

σSD,5
t

2 0.269 0.351 0.648 0.499 0.662 0.500 0.524 0.647 0.739

5 0.511 0.533 0.674 0.519 0.668 0.514 0.534 0.647 0.717

10 0.719 0.612 0.669 0.523 0.647 0.516 0.534 0.635 0.790

15 0.818 0.627 0.662 0.527 0.638 0.520 0.523 0.616 0.794

20 0.852 0.636 0.653 0.517 0.629 0.514 0.526 0.614 0.771

50 0.974 0.611 0.636 0.484 0.577 0.497 0.481 0.558 0.748

σSD,10
t

2 0.113 0.258 0.754 0.491 0.756 0.494 0.534 0.722 0.796

5 0.238 0.415 0.769 0.501 0.751 0.504 0.541 0.728 0.838

10 0.466 0.598 0.781 0.513 0.746 0.507 0.543 0.719 1.027

15 0.606 0.668 0.780 0.526 0.737 0.514 0.558 0.713 0.898

20 0.668 0.706 0.777 0.523 0.741 0.522 0.574 0.701 0.911

50 0.891 0.726 0.778 0.514 0.683 0.547 0.533 0.657 0.907

σSD,21
t

2 0.052 0.203 0.989 0.493 0.992 0.493 0.570 0.899 1.034

5 0.108 0.316 0.986 0.501 0.977 0.504 0.571 0.864 1.144

10 0.199 0.522 0.987 0.513 0.958 0.514 0.573 0.891 1.065

15 0.295 0.658 0.988 0.523 0.963 0.528 0.572 0.848 1.340

20 0.397 0.748 0.990 0.535 0.874 0.544 0.571 0.863 1.117

50 0.775 0.833 1.014 0.586 0.882 0.649 0.612 0.808 1.252

Table 4.5: Cryptocurrencies - Volatility time series: NMSE (averaged over all the continuation sets) of
the different forecasting methods. The bold notation is used to highlight all techniques
which are not significantly worse (p-value=0.05) than the one with the lowest NMSE score.
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Dataset H Naive UNI PLS DFM DFMLA DFMLPCA DFML′PCA LSTM RNN

σ0
t

2 1.332 1.047 0.972 0.969 0.987 0.962 1.010 1.018 1.006

5 2.177 1.916 1.826 1.857 1.872 1.838 1.822 1.849 1.865

10 1.438 1.246 1.157 1.173 1.184 1.164 1.155 1.164 1.184

15 2.499 1.304 1.220 1.220 1.227 1.209 1.222 1.219 1.242

20 1.566 1.227 1.155 1.153 1.163 1.174 1.146 1.160 1.160

50 2.026 1.221 1.136 1.135 1.144 1.134 1.120 1.160 1.164

σ4
t

2 0.585 0.504 0.463 0.433 0.521 0.434 0.450 0.564 0.496

5 2.295 1.347 1.318 1.292 1.356 1.268 1.275 1.328 1.346

10 1.047 1.003 0.948 0.936 0.991 0.911 0.946 1.014 1.018

15 1.372 1.132 1.078 1.067 1.118 1.048 1.071 1.126 1.120

20 1.272 1.023 0.948 0.926 0.977 0.908 0.933 1.010 1.007

50 1.111 1.036 0.936 0.942 0.987 0.919 0.981 1.052 1.042

σ6
t

2 1.780 0.854 0.805 0.776 0.859 0.767 0.758 0.852 0.822

5 1.859 1.800 1.750 1.741 1.809 1.747 1.715 1.781 1.770

10 1.264 1.171 1.106 1.102 1.154 1.083 1.118 1.149 1.139

15 1.222 1.074 1.001 0.999 1.049 1.001 1.011 1.093 1.046

20 1.332 1.185 1.103 1.107 1.156 1.108 1.116 1.172 1.170

50 1.280 1.188 1.112 1.098 1.139 1.089 1.126 1.206 1.177

σSD,5
t

2 0.276 0.649 0.834 0.783 0.877 0.787 0.769 0.823 0.864

5 1.122 1.275 1.304 1.289 1.355 1.242 1.215 1.329 1.352

10 1.329 1.199 1.163 1.139 1.167 1.095 1.162 1.131 1.201

15 1.408 1.149 1.095 1.068 1.113 1.064 1.066 1.111 1.134

20 1.576 1.215 1.154 1.133 1.166 1.141 1.150 1.203 1.182

50 2.584 1.292 1.316 1.444 1.184 1.243 1.192 1.229 1.273

σSD,10
t

2 0.453 0.667 0.901 0.805 0.964 0.805 0.788 0.827 0.881

5 0.698 0.886 1.018 0.932 1.073 0.934 0.927 0.910 1.009

10 1.133 1.010 1.044 0.970 1.073 1.005 1.005 1.000 1.104

15 1.495 1.065 1.140 1.292 1.271 1.092 1.013 1.066 1.032

20 1.642 1.141 1.181 1.340 1.223 1.145 1.078 1.108 1.178

50 1.916 1.258 1.233 1.256 1.158 1.144 1.171 1.310 1.338

σSD,21
t

2 0.033 0.306 0.747 0.509 0.772 0.510 0.561 0.776 0.725

5 0.123 0.372 0.732 0.530 0.736 0.595 0.566 0.867 0.716

10 0.346 0.520 0.808 0.660 0.853 0.682 0.673 0.992 0.932

15 0.608 0.680 0.862 0.771 0.893 0.795 12.315 0.970 0.868

20 0.827 0.827 0.923 0.905 0.890 0.840 0.777 1.010 1.256

50 1.603 1.259 1.210 1.357 1.109 1.076 1.311 1.282 1.585

Table 4.6: CAC40 - Volatility time series: NMSE (averaged over all the continuation sets) of the
different forecasting methods. The bold notation is used to highlight all techniques which
are not significantly worse (p-value=0.05) than the one with the lowest NMSE score.
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4.4.5 Computational time

In addition to forecasting accuracy, we also analyzed the total computational time required
to produce a forecast. The total computational time is obtained by summing up the time
required to train the considered model and the time needed to generate a forecast. Figure
4.5 shows that, for low dimensionalities (n = 40) the total computational time of the
different techniques is comparable, and independent of the forecasting horizon, except
for the optimized DFML’PCA, where the comparison of different forecasting strategies
require a computational time proportional to the length of the forecasting horizon. On the
other hand, for higher dimensionalities (n > 40), the computational time required to train
multiple univariate models (UNI), neural based models (RNN and LSTM) and PLS increases
considerably due to the increase of both dimensionality and forecasting horizons, while
DFML models, thanks to the dimensionality reduction component, maintain a reduced
computational time regardless of the forecasting horizon.

4.4.6 Discussion

The empirical analysis shows that DFML is able to produce accurate volatility forecasts,
especially in the case of high-dimensional noisy series (i.e. Cryptocurrencies dataset) with
non-smoothed volatility proxies σi, by summarizing well the intrisic market correlations in
a reduced number of factors. However, the presence of a smoothing factor (as in the σSD,w

proxies family) is shown to worsen the performances of the DFML methods. Moreover, we
have shown that, thanks to the dimensionality reduction component, DFML methods can
produce multi-step ahead forecasts with the same accuracy as concurrent methods with a
great reduction in terms of computational cost.
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4.5 iterative factor estimation and automatic hyperparameter selection

This section focuses on analyzing the impact of two extensions to the basic DFML framework:
iterative factor estimation and automatic hyperparameter selection (Section 3.2.4). The
assessment is performed over a set of synthetic (Section 4.2.6) and real datasets (Sections 4.2.7
and 4.2.8) datasets, through ablation studies, comparing the forecasting performance of the
strategy both with and without the considered extension.

4.5.1 Benchmarks

The experimental study assessed and compared several multivariate forecasting benchmarks,
both data-driven and model driven approaches. 8 The methods are listed below together
with the software used for the experiments. Note that, for the sake of assessment, we set the
lag to m = 2 and the maximum number of latent factors to q = 3 for all methods.

1. DFM: linear Dynamic Factor Model where PCA is used for factor estimation, the
number of factors is set to q and the forecasting of the factors is carried out with a VAR

method implemented by the estBlackBox function of the R package dse. The batch
PCA is computed using the base R eigen function whereas the tested incremental
PCA method is implemented by the function incRPCA of the R package onlinePCA.
The initialisation of the components for incremental PCA is performed with 2

3 of the
available data.

2. DFMLPC: machine learning Dynamic Factor Model where PCA is used for factor
estimation, the number of factors is set to q and the forecasting of each factors is carried
out in a univariate manner using a local learning predictor (lazy learning (Bontempi,
Birattari, and Bersini, 1999a; Bontempi and Ben Taieb, 2011)) and a multi-step-ahead
Direct strategy. The PCA estimation is performed in the same manner as DFM.

3. DFML’PC: Similar configuration as DFMLPCA with the addition of the automatic
selection strategy (described in Fig. 3.5): both the number of factors (in the range [1, q])
and the multi-step-ahead strategy (among Direct, Iterated and MIMO) are selected by
an out-of-sample strategy carried out on the training set.

4. DFMLA: Similar configuration as DFMLPC with the use of a feed-forward autoencoder
instead of PCA in the process of factor estimation.

5. DFML’A: Similar configuration as DFML’PC with the use of a feed-forward autoencoder
instead of PCA in the process of factor estimation.

6. RNN: recurrent neural network implemented by the keras_predict function of kerasR,
the R keras interface to the keras Deep Learning library for Theano. The network is a
fully-connected RNN with 10 hidden units. Since an automated setting of the number
of units would not have been feasible for computation time reasons, this number has
been set on the basis of trial and error over a small number of synthetic series.

7. DSE: VAR method implemented by the estBlackBox function of the R package dse. This
function implements an automatic model selection procedure based on information
criteria (Gilbert., 1993).

8. PLS: partial-least-squares forecasting implemented by the function mvr of the R package
pls. An out-of-sample criterion is used to select the size of the input space and the
number of principal components.

8 The experimental sessions can be reproduced by means of the R code available in the github repository
https://github.com/gbonte/panel.
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9. UNI: univariate multi-step-ahead Direct forecasting of each individual series with a
preliminary selection of the three most correlated features.

10. VAR: VAR method implemented by the function VARpred of the R package MTS for
Multivariate Time Series (Tsay, 2014).

11. SSA: SSA method implemented by the function
rforecast of the R package Rssa for Singular Spectrum Analysis (Golyandina et al.,
2015).

12. NAIVE: baseline method using the last observed vector as prediction for the following
H steps.

4.5.2 Experimental setup and results presentation

For each multivariate time series we performed a number of training and test tasks by
following a rolling origin strategy (Tashman, 2000). The size of the training set is N/3 and a
number of different continuation sets of length H are considered. For each continuation set,
all methods are assessed in terms of the average Normalized Mean Squared Error (Eq. 2.28)

Tables B.8, B.9, B.10 report the NMSE (averaged over all continuation sets) of all the
compared methods for the case studies in Sections 4.2.6, 4.2.7 and 4.2.8, respectively. The bold
notation is used to highlight all techniques which are not significantly worse (p-value=0.05)
than the one with the lowest NMSE score. Missing scores (or missing columns) in the
Tables of results are due to the excessive computational time required by the corresponding
technique for the given task or to numerical problems (e.g. in VAR). In order to suggest
how the computational time of some techniques scales with the dimensionality we show in
Fig. 4.6 the computational training time normalized with respect to the one of DFML’PC for
different values of n.

4.5.3 Batch versus iterative PCA

This section discusses the interest of adopting an incremental PCA approach for the Volatility,
Synthetic and Temperature datasets, using a 100-fold rolling origin (Tashman, 2000) cross-
validation procedure, as opposed to the 10-fold one of the other experiments. As shown in
Table 4.7, iterative PCA reduces the time required to compute the principal components
(TimePCA) for all the considered datasets. This is particularly evident for large dimensionality
(e.g. n ≥ 400) where the computation of PCA accounts for most of the total computational
time.

On the other hand, in terms of forecasting accuracy, we can conclude that:

• For the Temperature datasets (Table B.6), while dealing with 100 variables, DFML
outperforms DFM for each H > 2, while with 200 variables this only occurs for h = 50.
Nevertheless, the usage of iterative (online) PCA brings improvements to DFML for
h > 2 in both cases.

• For the Volatility datasets (Table B.7), DFML methods perform better than the corre-
sponding DFM method for H > 10. Even though, for the same forecasting horizons,
the Direct-batch combination outperforms all the other methods in the majority of the
cases, for the other combinations of both DFML and DFM, iterative PCA generally im-
proves with respect the batch one for σ4, σ5, σ6. For DFM methods, the use of iterative
PCA improves the global accuracy also on shorter horizons.
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• For the Synthetic datasets (Table B.5), DFML outperforms DFM for each H, except the
cases for 1000 variables and H = 50. Here, while dealing with more than 50 variables,
the usage of iterative PCA brings improvements to both DFML and DFM for every
forecasting horizon.

4.5.4 Manual versus automatic hyperparameter search strategy

This section discusses the interest of implementing an automatic hyperparameter search
strategy for the Volatility, Synthetic and Temperature datasets. In the experimental session
we considered the forecasting horizons H ∈ {2, 5, 10, 20, 50}, performing a 10-fold rolling
origin (Tashman, 2000) cross-validation procedure for each considered horizon H.

4.5.4.1 DFML versus state-of-art

From the analysis of the results we can derive the following considerations:

• Methods based on the DFM principle appear consistently among the most accurate
ones. In particular the comparison with UNI shows how the creation of a small number
of latent variables is extremely advantageous in synthetic as well as real tasks, even
for moderate dimensions (e.g. n = 20).

Figure 4.6: Computational training times normalized with respect to DFML’PC. Note that the training
time of SSA is not reported since the current R code demands the retraining of the model
for each forecast. VAR training time is one order of magnitude smaller than the ones
of DFML’PC and DSE (since VAR makes no order selection) but the method encounters
numerical problems for n ≥ 200.
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TimePCA TimeTotal

DFMLPC DFM

Direct Iterated MIMO

Dataset n Batch Online Batch Online Batch Online Batch Online Batch Online

σ0 40 0.0018 0.0012 0.1532 0.1513 0.1535 0.1537 0.3232 0.3246 0.0994 0.0971

σ1 40 0.0018 0.0011 0.1519 0.1525 0.1532 0.1514 0.3225 0.3249 0.0995 0.0948

σ2 40 0.0018 0.0011 0.1502 0.1529 0.1548 0.1541 0.3290 0.3321 0.1130 0.1118

σ3 40 0.0020 0.0011 0.1536 0.1566 0.1566 0.1563 0.3290 0.3279 0.1118 0.1044

σ4 40 0.0018 0.0011 0.1507 0.1551 0.1558 0.1513 0.3312 0.3321 0.1128 0.1064

σ5 40 0.0018 0.0012 0.1533 0.1562 0.1573 0.1528 0.3294 0.3318 0.1109 0.1090

σ6 40 0.0018 0.0012 0.1544 0.1564 0.1580 0.1547 0.3329 0.3353 0.1107 0.1114

Synthetic 20 0.0007 0.0011 0.1560 0.1582 0.1567 0.1569 0.3405 0.3400 0.1069 0.1088

Synthetic 50 0.0025 0.0014 0.1591 0.1593 0.1550 0.1575 0.3335 0.3372 0.1114 0.1091

Synthetic 100 0.0087 0.0013 0.1617 0.1524 0.1613 0.1515 0.3373 0.3337 0.1186 0.1076

Synthetic 200 0.0331 0.0016 0.1829 0.1514 0.1832 0.1505 0.3594 0.3266 0.1381 0.1043

Synthetic 400 0.1329 0.0030 0.2793 0.1485 0.2779 0.1477 0.4537 0.3236 0.2344 0.1004

Synthetic 1000 0.8784 0.0087 1.0155 0.1481 1.0158 0.1457 1.1833 0.3158 0.9787 0.0990

Temperature 50 0.0047 0.0020 0.2946 0.3011 0.3058 0.2969 0.6767 0.6723 0.2032 0.1983

Temperature 100 0.0094 0.0016 0.1722 0.1615 0.1692 0.1640 0.3686 0.3595 0.1225 0.1147

Temperature 200 0.0350 0.0017 0.1947 0.1598 0.1944 0.1582 0.3799 0.3493 0.1413 0.1065

Table 4.7: Computational time (in seconds) of the analyzed forecasting methods (averaged across all
the forecasting horizons). TimePCA denotes the computational time required to estimate
the principal components, whereas TimeTotal includes both the PCA calculation and the
forecasting time.

• If we restrict to consider linear approaches, DFM techniques consistently outperform
their competitors (e.g. DSE, VAR, SSA or PLS).

• The automatic selection strategy improves significantly the perfomance of the DFM
strategy For the two real case studies and for the synthetic benchmark (up to n = 400).
While the simple usage of nonlinear prediction models in DFMLPC does not lead to
major improvements, the introduction of automatic model selection of the number
of factors and of the multi-step strategy makes often DFML’PC the most accurate
technique.

• In spite of the nonlinear nature of most series (notably the synthetic ones) the use of
the autoencoder instead of PCA does not have significant impact. This is probably due
to the excessive variance of the method.

• Recurrent neural network techniques are often outperformed by the DFM strategy.
Note that no model selection technique is used for this method but that their imple-
mentation would have been difficult for lack of guidelines and very expensive in terms
of computation requirements.

• When the dimensionality of the series becomes very high (n = 1000), linear DFM
methods outperform all the other methods. This can be interpreted in terms of
bias/variance tradeoff: though DFML’PC has smaller bias than DFM, its variance tends
to increase with the dimensionality of the problem. For very large n, biased yet low
variant techniques like DFM are preferable.

• It is worth remarking that some of the techniques we presented are able to perform
very accurate forecasting (and significantly better than random) also for tasks reputed
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to be very complex (e.g. volatility forecasting), very long horizons (e.g. H = 50 for the
Earth temperature forecasting) and very large dimensionality.

4.5.4.2 DFML vs DFM

The aim of this section is to focus on Dynamic Factor models, and to analyze in more details
the differences between a traditional dynamic factor model (DFM) and the proposed machine
learning one (DFML). Experimental results show that:

• For the Synthetic and Temperature datasets (cf. Fig. 4.7a, 4.8a) the DFML performs
consistently better than the DFM, with the performance gains increasing as the fore-
casting horizon becomes larger, while for the Volatility series (cf. Fig. 4.9a) the DFML

only outperforms DFM starting from medium sized horizons. This can be explained
by the fact that the non-linear nature of DFML is able to better capture the non-linear
long-term dependencies among the time series that can be found in the Synthetic and
Temperature datasets. It is worth noting that, for all datasets, the addition of dynamic
factors reduces the benefits of DFML over DFM.

• By fixing the number of dynamic factors to 3 (as in the previous experiments), and
analyzing for different dataset dimensionalities, we can observe that, the accuracy
gains provided by DFML tends to decrease when the number of series increases (Fig.
4.7b and 4.8b). DFML however still outperforms the traditional DFM, especially for
larger horizons.
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Figure 4.7: Synthetic multivariate time series: ∆NMSE = NMSEDFM − NMSEDFML. Difference be-
tween the NMSE of dynamic factor models with (DFML) and without (DFM) nonlinear
forecasting component as a function of the forecasting horizon (x-axis) and (a) the number
of dynamic factors or (b) the number of variables. The vertical black bars represent the
confidence interval µ∆NMSE ± σ∆NMSE , µ∆NMSE and σ∆NMSE being respectively the mean and
standard deviation of ∆NMSE across trials.
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Figure 4.8: Earth Surface Temperature series: ∆NMSE = NMSEDFM − NMSEDFML. Difference be-
tween the NMSE of dynamic factor models with (DFML) and without (DFM) nonlinear
forecasting component as a function of the forecasting horizon (x-axis) and (a) the number
of dynamic factors or (b) the number of variables. The vertical black bars represent the
confidence interval µ∆NMSE ± σ∆NMSE , µ∆NMSE and σ∆NMSE being respectively the mean and
standard deviation of ∆NMSE across trials.
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Figure 4.9: Volatility time series: ∆NMSE = NMSEDFM −NMSEDFML. Difference between the NMSE
of dynamic factor models with (DFML) and without (DFM) nonlinear forecasting com-
ponent as a function of the forecasting horizon (x-axis) and (a) the number of dynamic
factors or (b) the number of variables. The vertical black bars represent the confidence
interval µ∆NMSE ± σ∆NMSE , µ∆NMSE and σ∆NMSE being respectively the mean and standard
deviation of ∆NMSE across trials.

[ February 19, 2022 at 15:43 – classicthesis v4.6 ]



4.6 concluding remarks 113

4.6 concluding remarks

In this chapter, we conducted an extensive study of the different components of the DFML,
across several real dataset.

First, we studied the performances of different factor forecasting and factor estimation
techniques within the DFML. Then, we proceeded to test the performances of the DFML, on
specific corner cases (e. g., ill-conditioned problems), where the benchmark techniques have
shown several limitations. Finally, we assesed the integration in the DFML of two extensions:
an incremental factor estimation technique and an automatic hyperparameter search strategy
for the factor forecasting compnent.

Overall, the results have shown that linear factor estimation techniques in combination
with either lazy learning or VAR for forecasting (corresponding to DF-PCA-Lazy/DFML
and DF-PCA-VAR/DFM, according to the experiments) are consistently among the top
performers across all the considered datasets, with the DFML significantly outperforming
DFM. Non-linear factor estimation techniques, and additional model-driven and data-driven
forecasting techniques have comparable performances within the DFML but the trade-off
between the increase in forecasting accuracy and the computational overhead tends to favor
simpler solutions (e. g., linear factor estimation and lazy forecasting techniques). In addition,
our experiments show that, on the considered forecasting problems, univariate techniques
are tough competitors for dynamic factor model techniques in multivariate, multi-step-ahead
forecasting. Although often neglected in the scientific literature, where representation-based
models (e. g., neural networks) tends to be predominant as benchmarks, employing well-
known univariate techniques such as Exponential Smoothing (ES) or Holt-Winters, in a
parallel fashion, instead of a complex global model, provided comparable performances to
some configurations of DFML.

In the case of volatility forecasting, we can observe a similar ranking of the methods, with
the DFML approach being significantly better than the benchmark methods, with univariate
techniques being close in performances in several situations. Here, an additional advantage
of a factor based approach is that the high dimensionality of the problem can be effectively
reduced of at least one order of magnitude, thus preventing the computational issues that
some of the global models (e. g., VAR, SSA) encounter.

Lastly, the empirical assessment showed that the extensions to the original DFML can
be beneficial for a broader employment of this framework. On one hand, we show the
effectiveness of an incremental approach to factor estimation, supporting the employment
of a factor based framework on a large scale streaming setting, where high dimensional
time series could be processed online, at a reduced computational cost. On the other hand,
we showed that an automatic selection of the optimal value of the parameters can further
improve the performance of the DFML, and simplify the model tuning.

In the next chapter, we develop an alternative multivariate multi-step-ahead forecast-
ing strategy, still based on a multivariate to univariate problem reduction, by employing
a combination of conventional machine learning approaches (i. e., feature selection and
model ensembling) and feature engineering relying both on expert-based and data-driven
approaches.
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5
S E L E C T I V E M U LT I VA R I AT E T O U N I VA R I AT E R E D U C T I O N
T H R O U G H F E AT U R E E N G I N E E R I N G A N D S E L E C T I O N -
E X P E R I M E N TA L A S S E S S M E N T

Results presented in this chapter have been published in the following papers:

• Fabrizio De Caro, Jacopo De Stefani, Gianluca Bontempi, Alfredo Vaccaro, and
Domenico Villacci (Oct. 18, 2020). “Robust Assessment of Short-Term Wind Power Fore-
casting Models on Multiple Time Horizons.” In: Technology and Economics of Smart Grids
and Sustainable Energy 5.1, p. 19. issn: 2199-4706. doi: 10.1007/s40866-020-00090-8.
url: https://doi.org/10.1007/s40866-020-00090-8 (visited on 07/27/2021)

• Fabrizio De Caro, Jacopo De Stefani, Alfredo Vaccaro, and Gianluca Bontempi (2021).
“DAFT-E : Feature-based Multivariate and Multi-step-ahead Wind Power Forecasting.”
In: IEEE Transactions on Sustainable Energy, pp. 1–1. doi: 10.1109/TSTE.2021.3130949

5.1 introduction

In this chapter we consider two implementations of the SMURF-ES strategy: the DAF-E and the
DAFT-E. We start by presenting the different datasets employed for the assessment (Section
5.2.2) before proceeding to the assessment of the two implementations: DAF-E and DAFT-E.

The first implementation (DAF-E - Section 3.3.5.1) employs a feature engineering process
based on rolling statistics on the historical available data. A feature selection technique
based on an information-theoretical filter reduces the number of input features to the fore-
casting component. The forecasting component considers two alternative rules for forecast
combination: a static and a dynamic one. The static combination gives equal weight to all
the underlying forecasting models, and is employed for benchmarking purposes whereas in
the dynamic one the combination weights are adapted to be inversely proportional to the
current forecasting error.

The second implementation (DAFT-E - Section 3.3.5.2) provides a two-fold improvement
over the first one. First, the feature engineering component is augmented by the introduction
of expert-based features tailored to wind power forecasting problems in order to capture
domain-specific temporal dynamics. Secondly, the forecasting combination is improved by
considering both an adaptive forecasting combination rule based on the current forecasting
error (similarly to the first implementation) and a set of forgetting factors. Forgetting
factors with decreasing weights also allow to include information about the past predictive
performances in the forecasting combination, favoring more recent information over older
one.

The two implementations are assessed in Sections 5.3 and 5.4, respectively. Section 5.5
concludes the chapter by summarizing the main findings from the assessment and outlining
some perspectives for future research studies.

5.2 datasets

For our studies, we consider a mixture of publicly available and private datasets related
to multivariate problems in the domain of renewable energies forecasting (15− 30 vari-
ables and > 104 samples). Table 5.1 contains an overview of the different datasets and
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the corresponding empirical assessments, while the details of the different datasets and
preprocessing techniques are presented in the remainder of the section.

Assessment Dataset N n
DAF-E Apennines

dataset
425000 15

DAFT-E
Australian
dataset

35040 22

Italian dataset 37920 28

Table 5.1: Summary of the different datasets employed for the assessment of the SMURF-ES strategy

5.2.1 Apennines dataset

For the DAF-E assessment, we consider a private dataset, representative of a wind farm
located in southern Italy on the ridge of Apennines chain, composed of 15 wind generators
and with an installed power of 30 MW.

The raw signals collected in a wind farm are typically the output of a Supervisory Control
And Data Acquisition (SCADA) system that returns series with a time resolution of 10 minutes.
This system collects information from all wind generators/anemometers of the wind farm
and supplies both environmental and mechanical data. All data are radio broadcast to a
central server where a database is continuously updated. The first data processing consists
in extracting and grouping data according to the source (generator/anemometer).

As shown in Figure 5.1, the terrain is characterized by ridge steeps and complex orography,
which causes chaotic behavior (notably fast changes in wind direction, strong shears,
turbulence, sudden gusts).

The impact of site morphology is confirmed by the spatial wind distribution shown by
the wind roses of the two anemometers, where dominant winds come from south-west and
north for anemometer 1 and 2, respectively. This setting increases the difficulties in relating
anemometers measures with the wind farm power generation, requiring then the adoption
of complex models to return an accurate forecasting.

The data considered for the experiment includes wind speeds/directions at different
heights, supplied by two anemometer spots, and the generated power, with a time resolution
of 10 minutes over a period of 2 years.

5.2.2 Australian and Italian datasets

For the DAFT-E assessment, we consider two real wind power forecasting case studies, related
respectively to an Australian and Italian wind farm. The Australian dataset includes 22 time
series, representative of Eastern Australian wind farm power generation, with 5 minutes
time resolution for 1 year. The data is publicly available via the R package of (Messner and
Pinson, 2019). The positioning of the wind farms is depicted in Figure 5.2

The Italian dataset includes 28 time series of a private domain farms located in southern
Italian wind farms, with a 15 minutes time resolution for 1 year. For confidentiality reasons,
the input data could not be made available.

In order to perform a fair comparison with the second dataset, the time scale of the first
datasets is raised to 15 minutes per sample by averaging the 5 minutes samples.
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Figure 5.1: Apennine case study - Satellite view with overlaid wind rose visualization of direction
and wind intensity for the considered wind farms.

Figure 5.2: Australian case study - Positioning of wind farms
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5.3 daf-e assessment

This experimental study assesses a first implementation of the SMURF-ES strategy (DAF-E -
Section 3.3.5.1), to provide multiple-step-ahead forecasts of a real wind farm situated on the
ridge of Apennines in southern Italy (Section 5.2.1). The assessment compares the proposed
method against different Statistical and Machine Learning-based forecasting techniques on
several prediction horizons ranging from 1 to 6 hours ahead (short-term forecasting).

In addition, we propose an in-depth statistical analysis of the performances of the different
forecasting models, inspired to the assessment procedure effected by the M3 competition
(Makridakis, Spiliotis, and Assimakopoulos, 2018).

Filtering

Feature Engineering

Embedding

mRMR mRMR

Training/Test split

Model identification
Model valida-

tion
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Figure 5.3: Flow chart of the proposed experiment assesment pipeline

On one hand, this aims to fill a gap in literature on wind power forecasting, where there
is an increasing need for a quantitative and statistically founded comparison of existing
approaches. Among the few examples we could find, we cite (Foley et al., 2012), which
tested several Wind Power Forecasting (WPF) models on different horizons in terms of Mean
Absolute Percentage Error (MAPE); (Demolli et al., 2019), discussing a spatial comparison
on daily wind power forecasting and the work of (Korprasertsak and Leephakpreeda, 2019)
which took into consideration only the mean value for an ensemble of accuracy metrics.
(Korprasertsak and Leephakpreeda, 2019) presents an assessment in terms of prediction
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interval of several Artificial Neural Networks models while (Ozkan and Karagoz, 2015)
introduced the t-student test between the assessed models for short term WPF models.
Unfortunately, the t-test is subject to α (probability error of I type) inflation in case of
multiple comparisons (Lee and Lee, 2018), reducing its reliability.

On the other hand, we hope that such statistically sound methodology could support
wind power producers and system operators (Albadi and El-Saadany, 2010) in choosing the
most suitable model for their needs, in light of the opening of the capacity market to the not
programmable renewable energies (Soares et al., 2016).

5.3.1 Statistical assessment

The choice of the most suitable metric (Ren, Suganthan, and Srikanth, 2015) to assess
wind power forecasting is still an open issue (Würth et al., 2019). Here we adopt the
following metrics: Mean Square Error (MSE), Mean Absolute Error (MAE) and R squared
(R2) (Cameron and Windmeijer, 1997). The details of their mathematical definition are
included in Table 5.2.

Metric Equation Domain

MSE 1
Nts

∑Nts
i=1 (yi − ŷi)

2 [0, ∞]

MAE 1
Nts

∑Nts
i=1

∣∣∣∣yi − ŷi

∣∣∣∣ [0, ∞]

R2
1− RSS

TSS
[0, 1]RSS = ∑Nts

i=1 (yi − ŷi)
2

TSS = ∑Nts
i=1 (yi − ȳ)2

nMSE MSE
σ2

ts
[0, ∞]

Table 5.2: Metrics employed for the DAF-E assessement. Nts is the number of samples in validation
dataset. σ2

ts is the variance of validation dataset.

In order to robustly assess the alternative WPF models, a cross-validation approach
has been considered. Each case is based on different pairs of training and validation
sets (Hyndman and Koehler, 2006), generated by applying the rolling window technique
(Tashman, 2000).

The aggregation of the resulting accuracy measures enables a thorough assessment 1

of each WPF model by means of the Friedman’s test (Friedman, 1937), a non-parametric
randomized block analysis of variance whose null hypothesis H0 is that the error distribu-
tions are the same across repeated measures. If the test rejects the H0 hypothesis, a post-hoc
analysis is run to find which pairs of methods are significantly different (Pereira, Afonso,
and Medeiros, 2015). The analysis is based on Tukey’s test and supplies an upper diagonal
square matrix with the column element sorted by their rank.

Eventually, once the Friedman’s test with post-hoc analysis has returned a rank of the
different competing models, we visualize the performance of all the models by means of
box-plot/heat-map graphs.

1 Note that such test differs from the conventional Analysis of variance (ANOVA) since it does not rely on any
assumption of normal distribution and equal variances of residual.
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5.3.2 Benchmarks

The experimental study assessed and compared the proposed ensemble techniques against
standard univariate forecasting methods, both from the statistical and machine learning
literature. The methods are listed below together with the software used for the experiments.

Model-driven Data-driven Proposed Ensembles

Exponential Smoothing Simple ANN Av-GBM-RF

Average GRUdrop (ANN) Av-Average-RF

GRU (ANN) Av-GBM-Average

SVM Av-SVM-GBM

GBM Av-SVM-Average

RF Ad-ANNs-Average

Ad-SVM-Average

Ad-GBM-Average

Ad-RF-Average

Ad-Average-RF-SVM-GBM

Table 5.3: Overview of the assessed models for the DAF-E assessement. Av. denotes an ensemble
of the proposed models based on the averaging of their forecasts, whereas Ad. denotes
a weighted combination of the forecasts, inversely propotional to their forecasting error
(Section 3.3.5.1)

• Average, ES: their model formulation is discussed, respectively in Sections 2.3.2.2 and
2.3.2.3. We employ the implementations made available by the M4 competition (Center,
2020). The multi-step-ahead forecast is obtained with a Recursive strategy (Section
2.2.3.2).

• SimpleANN: the model formulation is discussed in Section 2.3.3.1 and implemented
via rstudio/keras library. The architecture consists of an input layer, an hidden layer
of 32 nodes and ReLU activation function and a single output layer with H neurons.
The weights are optimized using RMSProp, with the MAE metric, over 20 epochs of
training.

• GRU, GRUDrop: The model formulation is discussed in Section 2.3.5.1 and imple-
mented via rstudio/keras library. The architecture consists of a fully connected RNN
with 32 GRU cells a single output layer with H neurons. The weights are optimized
using RMSProp, with the MAE metric, over 20 epochs of training. The GRUDrop variant
employs dropout and recurrent dropout with a probability of 0.2.

• SVM: the model formulation is discussed in Section 2.3.3.3, while the implementation
is provided by the e1071 library

• GBM: the model formulation is discussed in Section 2.3.3.4, while the implementation
is provided by the gbm library.

• RF: the model formulation is discussed in Section 2.3.3.5, while the implementation is
provided by the randomForest library.

For the neural based models, since an automated setting of the number of units would
not have been feasible for computation time reasons, this number has been set based on
trial and error over a small number of training sets.
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5.3.3 Experimental setup and results presentation

The considered dataset (Apennines - Section 5.2.1) does not contain any missing values,
and is already available in matrix form Y having N (number of observations) rows and n
(number of variables/time series) columns. Each time series in the dataset is re-scaled in
order to have null mean and unit standard deviation via Z-score standardization.

The data is split to generate V = 17 experimental cases, with a rolling window procedure
(Tashman, 2000). Each experimental case is made of 25000 samples partitioned according a
5 : 1 ratio into training and validation datasets.

The assessment results in terms of all the considered metrics and horizons are illustrated by
a number of heat-maps (Figures 5.7 and 5.8) and box-plots (Figures 5.4, 5.5 and 5.6). The heat-
maps illustrate the ranking of wind power forecasting models according to the Friedman’s
test where the most accurate models are situated at the bottom-left side. Each cell of the
heat-map takes two possible colors: grey if the WPF model in the row is significantly worse
than the one in the column, orange otherwise. By looking at the colors, this representation
allows to visualize clusters of equivalent predictors.

reading guide for friedman’s test The procedure to interpret the results of the
Friedman’s test is as follows: given a forecasting horizon H, the reader should read in
the figure from the bottom by selecting a model and moving up until the corresponding
diagonal cell, then move perpendicularly from left to right over the row. All the orange
elements considered during this trip correspond to models whose performances are not
significantly different. For example, in Figure 5.7, for the forcasting horizon H = 2 hours,
GBM lies in 4th position according to the ranking based on Friedman’s test. Thus, counting
from the bottom to the diagonal element, there are two orange cells above the selected
column, which means that the previous two models in the ranking (Av-GBM-RF and Ad-RF-
Naive) are not significantly different to GBM (the diagonal element is always excluded from
the count because it corresponds to the considered model itself). Then, starting from the
diagonal element, there are three orange cells by moving from left to right, which means
that the successive three models in the rank (Av-GBM-Naive, Av-SVM-GBM and RF) are not
significantly worse than GBM.

5.3.4 Results

The information provided by the heat-maps, based on the accuracy ranks, is coupled with
that provided by the box-plots, which shows the metric distribution for each considered WPF

model and forecasting horizon. In this way, the decision maker has a complete summary
about the ranks and performance dispersion for each method leading to many interesting
considerations made based on the experimental results:

• The method which appears consistently on the top ranking positions is the adaptive
ensemble model combining RF, SVM, GBM and Naïve.

• Exponential Smoothing has the highest accuracy only for H = 1 forecasting horizon
whereas for increasing values of H its performances deteriorate dramatically in terms
of MSE, which seems to penalize larger prediction error more than MAE.

• The ensemble forecasting of ANNs plus Naive tends to have higher ranking as the
forecasting horizon H increases.

• The influence of the system physics becomes dominant in H=5 and H=6, causing a
general accuracy reduction in all the WPF models. Indeed, the performance spreads
become much wider and there is no model clearly outperforming the rest.
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Figure 5.4: Visualization of model performance distribution in terms of nMSE across V = 17 cases.
The models are ordered by considering the rank supplied by the Friedman test.

On the basis of the previous considerations, our recommendation would be the adoption
of ensemble forecasting, which is able to guarantee both accuracy and stability over different
forecasting settings.

5.3.5 Conclusions

The growing wind power production is introducing uncertainty in power grid operations
with negative consequences for both system operators and wind producers because of the
stochastic and intermittent nature of the wind. This issue motivates the design of effective
wind power forecasting models to mitigate the power generation uncertainty. Nevertheless
a thorough procedure for comparing and assessing existing approaches is still lacking in the
literature on wind power forecasting.
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Figure 5.5: Visualization of model performance distribution in terms of MAE across V = 17 cases.
The models are ordered by considering the rank supplied by the Friedman test.

This section proposed a methodology for the robust assessment of different types of
short-term WPF models over multiple horizons, which is based on data resampling and
statistical tests.

The study highlighted that ensemble forecasting of statistical and machine learning
models dominates in terms of accuracy ranks, by supplying additional robustness with
respect to single approaches.

In particular, for horizons longer than two hours, the proposed technique is able to
outperform exponential smoothing, a well-known state-of-the-art statistical approach.

As far as the generalization of these results is concerned, it is important to remark that the
pipeline and the features selection technique have been designed to process heterogeneous
data sets, characterized by different size and complexity. Moreover, additional time series,
i.e. temperature and pressure profiles, can be integrated in the input data-set and processed
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Figure 5.6: Visualization of model performance distribution in terms of R2 across V = 17 cases. The
models are ordered by considering the rank supplied by the Friedman test.

by the forecasting algorithms, if their contribution is considered relevant by the feature
selection technique.

Future research will focus on the improvement of the performance of ensemble forecasting
models. This kind of models will be adapted to supply wind power forecast on larger areas,
trying to detect correlation between the several wind power plants by supplying multivariate
and hierarchical forecasts over the time.

5.3.6 Future work

The proposed approach has been developed to predict the overall wind farm power gen-
eration. During the preliminary design phase, a wind power forecasting on the single
wind generator has also been tested, showing worse results. This phase had the merit of
highlighting the need for enhancing condition monitoring of the generator asset, improving
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Figure 5.7: Visualization of Friedman’s test with Post-hoc Analysis in terms of MAE. The best models
are on the leftmost/lower side. The elements placed on the left side are placed in a
specular manner to those on the downside for each insert. An orange case means that the
models on the respective row/column are not significantly different.

the level of confidence in the analysis of the operation data. In particular, the comparison
between the output of the wind turbine generator models and the measured data allowed
detecting several critical operation states, especially in analyzing the wind - power output
with a 10-min time resolution. Indeed, as shown by Fig. 5.9, the active power spread for
each wind speed bin is significant, especially for low values. This is caused by the effect of
generator inertia, which smooths the fast transients in wind gusts as shown in the lower
side of the figure. Actually, the overall combined effect of inertia, blade/wind peripheral
rotor speed and yaw controls is the main factor inducing this power spreading (Yan et al.,
2015). Further, critical patterns include the deflections from the maximum power operation
point for the wind speeds greater than the nominal value (rightmost side), where several
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Figure 5.8: Visualization of Friedman’s test with Post-hoc Analysis in terms of MSE. The best models
are on the leftmost/lower side. The elements placed on the left side are placed in a
specular manner to those on the downside for each insert. An orange case means that the
models on the respective row/column are not significantly different.

data clusters can be clearly identified. These derated states are activated in order to satisfy
the power curtailment orders imposed by the transmission system operator in the presence
of power system congestion. Any other deviation between the predicted and the measured
data is a clear indication of a system anomaly, which could be induced by wrong control
settings, performance deterioration, incipient faults etc.
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Figure 5.9: Comparison between wind turbine generator experimental measures (”ptrue”) and
manufacturer curve (”pMC”)

5.4 daft-e assessment

This experimental study assesses a second implementation of the SMURF-ES strategy (Section
3.3) on two real wind power forecasting case studies: one based on a public dataset and the
other based on a proprietary dataset (Section 5.2.2).

This second strategy extends the first implementation by weighting the forecast combina-
tion based not only on the current performance of the underlying forecasting techniques,
but also on their historical performances, via a set of forgetting factors. This dynamic
model adaptation is introduced in order to better model the intrinsic time-varying behavior
characterizing the wind dynamics (Hanifi et al., 2020).

The assessment compares the proposed method (DAFT-E) against different Statistical and
Machine Learning-based forecasting techniques on several prediction horizons ranging from
1 to 3 hours ahead (H ∈ {1, . . . , 12} steps ahead, considering a sampling frequency of 15
minutes).

In addition, we propose two novel model assessment procedures inspired from the
financial domain. The first one borrows from modern portfolio theory (Markowitz, 1952):
the bivariate risk-return analysis (i. e., bias-variance principle), which allows to study the
spatial distribution of multivariate model performance through a visualization based on
bivariate box-plots (Rousseeuw, Ruts, and Tukey, 1999); The second one focuses on the
comparison between different families of multivariate forecasting strategies over different
horizons, time resolutions and taking into account, besides accuracy on the average case,
measures focusing on extreme case performances such as Value at Risk (VaR) and conditional
Value at Risk (cVaR) (Rockafellar and Uryasev, 2002).

These procedures have been developed to support the Transmission System Operator (TSO)
in assessing forecasting of load and renewable energy sources, with a focus on multiple
aspects: spatial, temporal and financial, over a time window ranging from 5 min to 1 week
ahead. In short-term system operation (pre-dispatch phase), which extends from 1 week to
1 day ahead of actual operation, TSO needs predictions to identify and allocate the system
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reserve. In real-time operation, which extends from 5 min to 30 min ahead of actual operation,
TSO needs prediction to bear RES/load increments/decrements following deviations from
the predicted profiles; to evaluate the power system status; to take preventive actions for
assuring a secure and reliable grid operation (Ning and You, 2019).

5.4.1 Statistical assessment

Validation is a crucial step in the assessment of a forecasting model but in the literature, the
focus is typically on the average prediction accuracy (e.g. Mean-Squared-Error) disregarding
other relevant aspects for the decision maker. Here we propose a more general approach to
assess the performance accounting for other performance measures like the spatial spread
analysis and the tail error distribution analysis.

5.4.1.1 Spatial performance analysis

The spatial analysis of forecasting performance is important to assess possible distortions in
studies that employ the obtained predictions, since an unbalanced forecasting performance
may compromise the quality of the decision making process.

A reliable multivariate wind power forecasting methodology should assure a consis-
tent prediction performance across measurement points. Inconsistent performance may
compromise the quality of the decision-making process based on the obtained predictions.

Traditionally, the prediction accuracy of a multivariate forecasting methodology is assessed
by computing a single error metric over all the target variables.

Unfortunately, this approach neglects the distribution of the forecasting model errors
across the target variables. Therefore, a novel validation procedure is proposed to fulfill this
gap inspired by the modern portfolio theory (Markowitz, 1952).

In particular, the following quantities are computed:

• µ
(ω,k,h)
ERR : the average value of the considered error metric ERR across the target variables

for the forecasting model ω, forecasting horizon h and trial k.

• σ
(ω,k,h)
ERR : the standard deviation of the considered error metric across the target variables

for the forecasting model ω, forecasting horizon h and trial k.

Finally, a bivariate distribution is built by collecting µ
(ω,k,h)
ERR and σ

(ω,k,h)
ERR for each trial in the

experiment.
In particular, Fig. 5.10 shows some examples of the possible occurrences in the built

bi-variate distribution. (1) low bias and low spread; (2) low spread and high bias; (3) high
spread, low bias; (4) high bias, high spread. The closer is the point to the lower-left corner,
the better is the performance of the forecasting model, given the k-th trial.

The results are visualised by means of a bivariate extension (Rousseeuw, Ruts, and Tukey,
1999) of the univariate box-plot where the conventional Interquatile Range and whiskers are
replaced by two convex hull polytopes. In particular, the 50% of population is included in
dark-colored area (bag), the 99.7% in the the light-colored one (fence), and the points outside
the fence are considered outliers (Fig. 5.13,5.14).

5.4.1.2 Tail Analysis of Wind Power Forecasting Error

Although the spatial analysis of the performance returns a clear picture of the forecasting
model behavior, it does not supply enough information about the worst-case configuration.
To address such aspect, we adopt the tail analysis of the forecasting error distribution by
using some well-known metrics in the financial domain: the value at risk (VaR), and the
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Figure 5.10: Example of bivariate plot σERR− µERR, for with the selected error metric being MSE. The
highlighted points represent configuration with low bias and low variance (1), large bias
and low variance (2), large variance and low bias (3) and high bias and high variance (4).

conditional value at risk (cVaR). Traditionally, these metrics summarize the probability
distribution of financial returns to determine the worst-case financial losses given a risk
threshold (Rockafellar and Uryasev, 2002) and a strategy. In this manuscript, we apply
them to the probability distribution of the forecasting errors, where each forecasting model
corresponds to a different strategy. In other words, we are assessing, given an identical risk
threshold for all forecasting models, which one returns the least absolute error.

In order to maintain a coherent interpretation with respect to the financial counterparts,
the analysis considers absolute errors. The rationale is twofold: first, any gap between
predicted and actual value is detrimental independently of the sign; second, we do not
convert the forecasting error into TSO economic losses since this would require a deeper
analysis (and more complex simulations) which are out of the scope of the manuscript.

Although it relies on some simplifying hypotheses, this approach is crucial to assess the
reliability of the forecasting model. Indeed, it is reasonable to assume that the lower is the
risk to commit a large prediction error, the lower is the possible associated economic losses.
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Algorithm 2 Algorithm for MAE,VaR, and cVaR estimation for the ω-th model and forecast-
ing horizon H, across K case studies

1: for h ∈ {1, . . . , H} do
2: for k ∈ {1, . . . , K} do
3: Compute the absolute error matrix
4: Compute MAE(ω,k,h),VaR(ω,k,h),and cVaR(ω,k,h)

5: end for
▷ A K MAE, VaR, and cVaR value collection is obtained, hence the statistical quantities are
computed again on the obtained distributions

6: MAE(ω,h) ← mean({MAE(ω,1,h), . . . , MAE(ω,K,h)})
7: VaR(ω,h) ← VaRα({VaR(ω,1,h), . . . , VaR(ω,K,h)})

8: cVaR(ω,h) ← cVaRα({cVaR(ω,1,h), . . . , cVaR(ω,K,h)})
9: end for

Algorithm 2 summarizes the procedure to estimate VaR and cVaR from the experimental
results, given the ω-th forecasting model, and the h-th forecasting horizon, where:

VaRα(X) := min{z|F̂X(z) ≥ α} (5.1)

cVaRα(X) := E[X|X ≥ VaRα(X)] (5.2)

where X is the absolute error distribution, which is obtained collecting forecasting error
across all the wind farms, given the ω-th model and h-th forecasting horizon, F̂X is the
empirical cumulative distribution function, and α is the confidence level. In the results, VaR
and cVaR are compared to the average value of X that is the Mean Absolute Error (MAE)
(Fig. 5.11).

mean VaRα cVaRα Xi

pd f (Xi)

Figure 5.11: Qualitative visualization of the expected value (mean), VaRα, and cVaRα for a generic
non-negative loss distribution.

It should be noted that VaR is the maximum value the decision-maker accepts to lose in a
percentage of the cases equal to α, as shown in (5.1). Mathematically, the VaR is equivalent
to the α-th percentile of a empirical distribution. The smaller is this value, the smaller is
the maximum absolute forecasting error we accept to commit by using a forecasting model
in the α % of cases. In other words, the lower the VaR, the more reliable the model is.
Unfortunately, VaR is not such a good metric of risk since it neglects the loss values greater
than VaR. Differently, cVaR is a coherent and robust measure of risk. Hence, it supplies
information about the expected losses greater than VaR as shown in (5.2). Particularly, cVaR
is computed through the Convex Combination Formula (Rockafellar and Uryasev, 2002). In
other terms, the cVaR represents the upper bound for the worst expected forecasting error.
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5.4.2 Benchmarks

The experimental study assessed and compared the proposed DAFT-E approach against
different standard classes of models from the statistical and machine learning literature, rep-
resentative of both the state-of-the-art in wind power forecasting (Deng et al., 2020; Messner
and Pinson, 2019) and time series forecasting (Makridakis, Spiliotis, and Assimakopoulos,
2020b). Note that the considered multivariate forecasting task can be either approached
in a univariate fashion by decomposing it in n SISO tasks or n MISO or in a multivariate
fashion (MIMO) by capturing in a single model both the temporal and cross-series (e.g.
spatial) dependencies between time series. The main features of the considered forecasting
methods are summarized in Table 5.4, while Table 5.5 contains an overview of the associated
forecasting pipelines. Finally, the list below resumes the software used for the experiments.

Model Model class Approach Parameters

Dynamic Adaptive Feature
Temporal Ensemble – DAFTE

Hybrid Ensemble n MISO V, Λ

Naive it – Persistence Naive n SISO ∅

Holt-Winters Exponential
Smoothing – Es it

Statistical n SISO αHW

Lazy Learning FS all Machine Learning n MISO k

Lazy Learning FS raw Machine Learning n MISO k

Lazy PCA Machine Learning n MISO k

Random Forest FS all Machine Learning n MISO NRF

Random Forest FS raw Machine Learning n MISO NRF

Random Forest PCA Machine Learning n MISO NRF

Long Short Term Memory
RNN - LSTM

Deep Learning n MISO NLSTM, δLSTM

VAR it Statistical MIMO L

Online VAR Statistical MIMO L, λVAR

Table 5.4: Characteristics of the considered models for the DAFT-E assessment. The models compos-
ing the DAFT-E ensemble are highlighted in bold.

Model Feature Engineering Embedding Feature Selection Dimensionality Reduction Strategy

Dynamic Adaptive Feature
Temporal Ensemble – DAFTE

(Yes) (Yes) (Yes) - MRMR (No) Direct

Naive it – Persistence (No) (No) (No) (No) Recursive

Holt-Winters Exponential
Smoothing – Es it

(No) (No) (No) (No) Recursive

Lazy Learning FS all (Yes) (Yes) (Yes) - MRMR (No) Direct

Lazy Learning FS raw (No) (Yes) (Yes) - MRMR (No) Direct

Lazy PCA (Yes) (Yes) (No) (Yes) - PCA Direct

Random Forest FS all (Yes) (Yes) (Yes) - MRMR (No) Direct

Random Forest FS raw (No) (Yes) (Yes) - MRMR (No) Direct

Random Forest PCA (Yes) (Yes) (No) (Yes) - PCA Direct

Long Short Term Memory
RNN - LSTM

(No) (No) (No) (Yes) - PCA Direct

VAR it (No) (No) (No) (No) Direct

Online VAR (No) (No) (No) (No) Direct

Table 5.5: Characteristics of the forecasting pipelines of considered models for the DAFT-E assessment.
The models composing the DAFT-E ensemble are highlighted in bold.

• Naive, ES it: their model formulation is discussed, respectively in Sections 2.3.2.1
and 2.3.2.3. We employ the implementations made available by the M4 competition
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(Center, 2020). The multi-step-ahead forecast is obtained with a Recursive strategy
(Section 2.2.3.2). The parameter αHW controlling the exponential smoothing forecasting,
is automatically fitted from the supplied data.

• Random Forest: the model formulation is discussed in Section 2.3.3.5, while the
implementation is provided by the randomForest library, employing NRF decision
trees. The number NRF of decision trees is optimized during the learning process.

• Lazy Learning: the model formulation is discussed in Section 2.3.3.2, while the imple-
mentation is provided by gbonte/gbcode library. The optimal value of k employed for
the predictions is automatically optimized according to the input data supplied to the
method.

• VAR it: the model formulation is discussed in Section 2.3.4.3, while the implementation
is provided by vars library.

• Online VAR: In addition to the basic VAR(L) model, we included in our experiments
an optimized version, where the number of model parameters is reduced by means of
a LASSO regularization (controlled by the parameter λVAR, optimized on the input
data). Moreover, an online procedure with a reduced computational cost (Messner and
Pinson, 2019) is employed to update the values of the model parameters.

• LSTM: The model formulation is discussed in Section 2.3.5.1 and implemented via
rstudio/keras library. In our experiments we fixed the hidden layer number to one,
and we performed a grid search, on the test set, over different values of cells per layer,
dropout rate in the input and recurrent elements, and regularization technique (no
regularization, L1, L2, and a combination of both). The resulting architecture employs
NLSTM = 100 cells, no regularization and a dropout rate δLSTM = 0.2 for both the
input and recurrent elements. It should be noted that using the test set for the model
selection might yield over-optimistic performances. Similar architectures have been
considered as state-of-the art techniques in a recent survey (Deng et al., 2020).

Note that for both Lazy and RF the same model architecture is considered three times
(Tables 5.4, 5.5), corresponding to the raw, all and PCA variants. The raw variant considers
only the original features (historical data), without including the variables generated through
Feature Engineering, whereas the all includes also the latter. In both cases, features selection
is employed to reduce the number of features as input to the models. The PCA variant, on the
other hand, replaces the process of feature augmentation and reduction by a dimensionality
reduction approach based on PCA.

5.4.3 Experimental setup and results presentation

The considered datasets (Italian and Australian - Section 5.2.2) do not contain any missing
values, and are already available in matrix form Y having N (number of observations) rows
and n (number of variables/time series) columns. Each time series in the dataset is already
normalized in the range [0, 1].

Both datasets are split to generate K = 45 experimental cases, with a rolling window
procedure (Tashman, 2000). Each experimental case is split into training and validation sets
of 300 (12 days) and 100 (4 days) samples respectively. 1 statistical analysis is performed on
the collected accuracy metrics to analyze the behavior of the models across time.

Figures 5.13 and 5.14 show the bag-plots of the bivariate distribution µMSE-σMSE obtained
for the Australian and Italian benchmark, respectively. The closer is the cloud point to
the lower-left corner (low mean - low variance of the forecasting error), the better is the
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performance of the ω-th forecasting model over the K-th trials. Note that in this visualisation
the variability over the vertical (horizontal) axis is related to the variability across (within)
trials.

5.4.4 Results

Figures from 5.12 to 5.16 visualize the experimental results of the two benchmarks. The full
results for both the Italian and Australian dataset are made available in Appendix C.

The MSE reduction ratio (nMSE) between the ω-th model and the Naive baseline for the
kth trial and the hth forecasting horizon is computed as:

nMSE(ω,k,h) = (MSE(ω,k,h)/MSE(Naive,k,h))− 1 (5.3)

Figure 5.12 shows the distribution of the nMSE according to (5.3) across K = 45 trials and
for different forecasting horizons. Note that only negative values of nMSE correspond to an
improvement in accuracy with respect to the Naive baseline.
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Figure 5.13 shows that the DAFT-E combination strategy outperforms the single compo-
nents (Lazy FS all, RF FS all, RF FS raw) taken individually, as well as state-of-the-art
approaches. We get a similar result for the Italian benchmark (Fig. 5.14) but, for the sake of
conciseness, we report only a smaller set of approaches.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

DAFT-E ES it LSTM dir Naive it RF FE all RF FE raw VARon it

h
:
01

h
:
02

h
:
03

h
:
04

h
:
05

h
:
06

h
:
07

h
:
08

h
:
09

h
:
10

h
:
11

h
:
12

0.
00

0.
04

0.
08

0.
00

0.
04

0.
08

0.
00

0.
04

0.
08

0.
00

0.
04

0.
08

0.
00

0.
04

0.
08

0.
00

0.
04

0.
08

0.
00

0.
04

0.
08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

0.00
0.04
0.08

σMSE [-]

µ
M

S
E

[-
]

model DAFT-E ES it LSTM dir Naive it RF FE all RF FE raw VARon it

Figure 5.13: Visualization of the bagplot of the bivariate distribution µMSE-σMSE across the forecasting
horizon h for the proposed model (DAFT-E), the internal algorithms of DAFT-E (Lazy
FS all, RF FS all, RF FS raw, Naive it), and the the benchmark models showing the
best performance - Australian case study. A smaller bagplot area indicates a reduced
variability in the the corresponding method’s predictions.

Fig. 5.15 shows the risk measures (MAE,VaR Equation (5.1) and cVaR Equation (5.2))
across different forecasting horizons. This representation allows to compare the average
performance of different forecasting techniques (MAE) versus the worst-case (α = 95%)
configurations. In particular, we consider that the lower the increment of those quantities
for increasing horizons, the higher is the robustness.

Finally, Fig. 5.16 shows the computational times of all models. The total computation time
accounts for feature engineering, embedding, feature selection, and model training steps. If
a model does not include some of these steps, the corresponding computational time is null.
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Figure 5.14: Visualization of the bagplot of the bivariate distribution µMSE-σMSE across the forecasting
horizon h for the proposed model (DAFT-E), and the the benchmark models showing
the best performance - Italian case study. A smaller bagplot area indicates a reduced
variability in the the corresponding method’s predictions.
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Figure 5.15: Visualization of the expected value (mean), VaRα, and cVaRα (α = 95%) across the
forecasting horizon for all models - Australian case study. For all the three metrics, the
lower the metric value is, the smaller is the risk (in terms of absolute forecasting error)
that we are going to expect using the corresponding method.

5.4.5 Conclusions

Overall, some general considerations may be made on the basis of the experimental results:
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Figure 5.16: Spread of the computational time across K = 45 trials, Australian Case Study. Smaller
computational times indicate an higher computational efficiency of the methods.

1. Multi-step-ahead wide area wind power forecasting relying solely on historical power
data is a challenging task, as shown by the difficulty in improving over simpler
baselines (Naive, Holt-Winters).

2. The proposed approach DAFT-E is a promising alternative to the state-of-the-art
forecasting strategies in this context. In terms of nMSE, DAFT-E is the best model,
followed by VARon it (Fig. 5.12). The LSTM dir accuracy is definitely the worst one.
The ES performance dramatically decreases as h increases.

3. The DAFT-E has a balanced performance on the plane µMSE-σMSE over h as shown by
Fig. 5.13. This is shown by the fact that its bagplot area is the smallest and is closer to
the origin with respect to those of multivariate approaches like VARon it.

4. The DAFT-E has the least absolute error in terms of VaR and CVaR, for a α = 95%
confidence level. In particular, the best DAFT-E is the one using RF FS all and RF FS
raw (Fig. 5.15).

5. The addition of smooth features to the information set improves the accuracy compared
to the adoption of raw features only, particularly for large h (Fig. 5.13).

6. DAFT-E demands a much larger computational time than the fastest method (VARon
it), yet such overhead is compensated by a better performance accuracy (Fig. 5.16). The
same reasoning does not apply to LSTM dir whose heavier computational time is not
compensated by an increase in accuracy.

7. The embedding procedure covers about 50% of the entire computational time. Future
work will focus on speeding up this step (e.g. by making it parallel).
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5.5 concluding remarks

In this chapter, we analyzed two implementations of the SMURF-ES strategy, each of them
having different approaches on feature engineering and forecasting combinations, both
devised to address the problem of wind power forecasting, a particularly challenging
problem given the stochastic and intermittent nature of the wind.

The first strategy (Error-based dynamic combination) employs a feature engineering process
aimed at exploiting the historical information embedded in the series, by computing a set of
rolling statistics over the available values of the series, while the forecasting combination
is made through a dynamic rule, giving more weight in the forecast combination to the
models having a smaller forecasting error.

The second strategy (DAFT-E) extends the feature engineering process proposed by the
first strategy by including a set of expert-based features, devised to capture specific dynamics
wind power generation, which can dramatically impact the forecasting performance. The
forecasting combination is also improved on two aspects: the nature of the underlying
models and the combination rule. Instead of considering fully heterogeneous models, in this
ensemble we consider the models of the same family, but trained on different input features,
in order to still preserve their diversity. As for the combination rule, the introduction of a
set of forgetting factors allows to combine models based not only on their performance on
the current set of values, but also to account for past forecasting performance.

Both strategies have been assessed on data coming from real wind farms, employing
an extensive cross-validation and post-hoc statistical analysis. The results confirmed the
efficiency of heterogenoeus ensembles with dynamic combinations rules, a well-known
result from the scientific literature (Cerqueira et al., 2017a). Moreover, the statistical analysis
allowed to assess the robustness of the proposed technique across different forecasting
horizons (Figures 5.8 and 5.7) as well as the bias-variance tradeoff associated to the different
models (Figures 5.13 and 5.14), confirming the forecasting error variance reduction associated
to forecasting combination techniques.
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Part III

C O N C L U S I O N S A N D F U T U R E W O R K

"What we know is limited, and what we don’t know is infinite."

– P. Laplace
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6
C O N C L U S I O N

6.1 conclusions

The technological revolution of the last two decades has brought an exponential increase in
the quantity of produced data across the world (Figure 1.2). More precisely, the development
and miniaturization of interconnected computing devices (i. e., the IoT revolution) has led
to a pervasive diffusion of these devices in several industrial domains. These devices,
when equipped with various sensors, could be employed for different tasks, ranging from
production monitoring (in the energy and manufacturing domain), to traffic analysis (both
on streets and computer networks), to continuous processing of publicly available data
(e. g., stock market analysis). The common trait among these seemingly different domains
is the need for analyzing a large quantity of data coming from heterogeneous sensors,
potentially displaying a highly dynamical behavior and spatio-temporal dependencies
among them. In addition, in some of these domains (e. g., energy production and stock
market), it might also be beneficial to produce accurate predictions of the analyzed quantities
for one or multiple steps in the future.

In more formal terms, the majority of the aforementioned problems can be addressed as
multivariate (to account for interdependencies among the series) and multiple-step-ahead
forecasting problems (to produce accurate forecasts for several steps in the future). Multivari-
ate and multi-step-ahead forecasting is a particularly difficult problem, combining both the
problems related to the long-term estimation in the future (error accumulation, increasing
uncertainty) with the computational burden required to estimate multivariate models with
a large number of variables. In order to simplify the problem, the multivariate and multiple-
step-ahead are often treated separately in the scientific literature. In other words, either
the problem is approached as multivariate, but considering a one-step-ahead forecasting
horizon, or a multiple-step-ahead approach is employed, but the task is decomposed in a set
of univariate forecasting problems. This thesis focused on tackling the two aspects jointly,
with a particular focus on techniques inspired by the machine learning domain.

In Chapter 2, we analyzed the scientific literature concerning multivariate time series fore-
casting for both statistical (model-driven) and machine learning (data-driven approaches).

Among the statistical approaches, VAR-based and generalized DFM approaches are the
most employed in practice, especially in the field of econometrics. The popularity of VAR-
based approaches is closely related to the extensive study of the model and its properties
in the scientific literature (De Gooijer and Hyndman, 2006), as well as the interpretability
of the model, due to its simple structure. The ease of interpretability comes at the price of
an increased number of parameters to be estimated, which limits the applicability of the
technique when the dimensionality of the data increases (Escribano, Peña, and Ruiz, 2021).
Generalized DFM (Forni et al., 2000) models address the dimensionality issue by including a
dimensionality reduction component to compress the original high dimensional space into
a smaller one, while still retaining the majority of the informative content. Although this
choice represents an improvement over the VAR model, both the approaches still rely on
strong assumptions about the distribution of the original data (normality and stationarity)
and are limited to a one-step-ahead forecast.

In recent years, after their remarkable performance in several different applications such
as image and signal analysis (Dargan et al., 2020) with limited knowledge and assumptions
on the underlying data, Deep Learning models have also made their way in the domain

143
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of time series forecasting (Torres et al., 2021). The recent success of these Deep Learning
models can be explained by their ability to overcome the limitations of the aforementioned
statistical approaches, by offering intrinsic support to multiple-step-ahead forecasting, no
assumptions on the nature of the input data, in addition to the possibility of easily scaling
up the architecture of the model as the input dimensionality increase. The drawback of
these approaches is that the resulting models have an extremely large amount of parameters
to be estimated, which consequently require computationally intensive training procedure
and fine-tuning of the parameters to obtain a consistent forecasting performance.

In this context, we observed that traditional machine learning approaches have received
limited attention in the multivariate and multiple-step-ahead literature and that the proposed
approaches focus on a particular ML technique (i. e., SVM, k-NN and fuzzy approaches),
specifically tailored to the considered problem (Bitencourt and Guimarães, 2021; Talavera-
Llames et al., 2019; Wang et al., 2020). In order to fill this gap, we proposed two forecasting
strategies, discussed in Chapter 3, employing traditional machine learning components
such as dimensionality reduction, feature engineering and feature selection approaches, and
combining concepts coming from both the statistical and the data-driven literature.

The first strategy, DFML, is inspired by the Generalized DFM approach and combines the
ease of interpretability of the DFM framework with the flexibility offered by the choice
between non-linear non-parametric and parametric models for both the factor estimation
and the factor forecasting components.

In Chapter 4 we assessed the DFML strategy on several heterogeneous real-life problems.
In these contexts DFML showed its competitive performance on very large scale problems
(n > 102), in particular when employing a linear dimensionality reduction technique (PCA

- Section 2.4.1), in combination with multiple-step-ahead lazy techniques (Section 2.3.3.2),
both with and without automatic parameter selection. Although this assessment contributed
to a better understanding of which family of techniques should be employed within the
DFML for a given problem, the choice between linear/non-linear dimensionality reduction
and model-driven/data-driven techniques still remains a challenging problem in practical
applications. Moreover, some experiments on smaller-scale problems (i. e., wind power
forecasting problems with n ∼ 30) highlighted that performance improvements related to
the DFML approach (i. e., dimensionality reduction followed by forecasting) were greatly
reduced, bringing the model accuracy closer, when not inferior, to that of the benchmarks.

This decrease in performance led us to rethink the problem approach to multivariate
forecasting in order to overcome the encountered limitations, yielding to the development
of the SMURF-ES strategy through three structural modifications to the DFML strategy.

The first modification consisted in replacing the dimensionality reduction module with a
feature engineering component followed by feature selection. The rationale of this choice
is that, given the reduced problem dimensionality, the increase in the number of features
could still be computationally affordable if the added informative content by the feature
engineering process can improve the forecasting performances. Moreover, the feature selec-
tion process allows to greatly reduce the number of input features to the problem while still
preserving the informative content.

The second modification is related to the problem decomposition: instead of generating a
reduced set of transformed (latent) variables, the SMURF-ES approach works in the original
feature space, tackling each time series in the multivariate data as an independent problem.
Once again, such approach is computationally manageable only when the problem size is
small n < 30.

The last modification is related to the forecasting component. Instead of relying on
a single forecasting technique at a time, as in the DFML, the SMURF-ES strategy employs
a forecasting combination technique, to further improve the predictive accuracy on the
different individual problems. The forecast combination includes a dynamic combination of
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heterogeneous (i. e., coming from both the statistical and machine learning domains) and
computationally inexpensive models, in order to improve the diversity of the ensemble,
while still limiting the computational burden.

Overall, as the DFML strategy, SMURF-ES combines traditional statistical approaches with
data-driven ones, into different components of the traditional machine learning pipeline of
feature engineering, feature selection, and forecasting.

In Chapter 5 we assessed the SMURF-ES strategy, through two specific implementations, the
DAF-E and the DAFT-E (Sections 3.3.5.1 and 3.3.5.2) on the problem of wind power forecasting.
This assessment showed the complementarity of the SMURF-ES strategy with respect to the
DFML on smaller scale datasets. Although the combined process of feature engineering and
selection could cause a dramatic increase in the number of available features, in the case
of smaller datasets (n ∼ 30) this approach remains an effective technique to improve the
informative content available for forecasting. Analogously, an ensemble approach (requiring
the training of multiple models) with a multiple-step-ahead direct strategy for each uni-
variate series remains computationally feasible only when the dimensionality of the input
data is reduced. The results on real datasets show the outperformance of the proposed
strategies with respect to state-of-the-art techniques in both statistical (i. e., online VAR) and
DL domain. Moreover, the robustness of the proposed strategies has been assessed through
conventional statistical testing and by applying a novel statistical approach inspired by the
risk management theory.

The main message of the thesis can be summarized as follows: algorithms and methodolo-
gies from the traditional machine learning literature have been neglected in the multivariate
and multistep-ahead forecasting literature, where the dominant approaches are either from
the econometric or the deep learning domains.

Nevertheless, we have shown that traditional machine learning approaches can produce
competitive results when employed in tailored strategies for multivariate and multiple-
step ahead forecasting. Moreover, we have assessed that, for a similar predictive accuracy,
traditional machine learning approaches have a reduced computational time compared to
deep learning techniques. This reduction also implies reduced energy consumption which
could be beneficial for practical applications (e. g., embedded systems).

We showed that the forecasting performance can be further improved by employing
conventional approaches, such as automated model selection and feature engineering,
without the need for overly complex model structures (e. g., those proposed in DL). Still,
in our approach to multivariate and multi-step-ahead forecasting several methodological
choices need to be performed for both of the strategies, for instance, the dimensionality
reduction/feature selection techniques and the forecasting models. Our assessments helped
to shed some light on the most relevant components in the proposed strategies, but further
research still needs to be performed to determine the best methodological choices for the
problem at hand.

Yet, our proposed strategies confirmed that a combination of statistical and machine
learning components, often seen as competitors, is beneficial to improve forecasting accuracy
for multivariate multiple-step-ahead problems, as the peer-reviewed work (i. e., journal
papers and patent) in both the academic and industrial domain showed. Learned lessons
and perspectives for future research are discussed in the following sections.

6.2 guidelines for strategy choice

This section aims to briefly summarize the main findings of this thesis in an quick guide
to the practitioner, as summarized in Figure 6.1. First of all, we would like to direct the
attention of the reader to an aspect often neglected in the framework of multivariate and
multi-step-ahead forecasting. Even though it might seem counterintuitive, the first test a
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Multivariate
time series
forecasting

Better
than uni-
variate
bench-
marks? Univariate

(Naive,

ES, HW)

No

Latent
factor
hypoth-
esis?

Problem
size?

VAR/VARMA

small

SMURF-ES
medium

DNN

largeNo

Problem
size?

DFM

small

DFML
medium

DNN

large

Yes

Yes

Figure 6.1: Indicative decision tree summarizing the criteria for the choice of the forecasting approach
for multivariate problems, based on the results presented in this thesis.

practitioner should do is to employ univariate forecasting techniques (such as those em-
ployed as benchmarks in forecasting competitions: Naive - Section 2.3.2.1, ES - Section 2.3.2.3,
for instance) as baseline references for their techniques, and test for a statistically significant
outperformance. As recent works showed (Paldino et al., 2021; Shah and Shroff, 2021),
univariate techniques are still tough competitors to beat, even with high dynamical series,
especially for shorter horizons. Once the out-performance of the baselines has been estab-
lished, the choice of a forecasting approach is mostly driven by two factors: the presence
of latent factors and the dimensionality of the input data (i. e., the number of time series
n). First, the practitioner needs to consider whether the existence of latent temporal factors
(Figure 6.2) can be hypothesized. For instance, in the case of renewable energy forecasting,
we might assume that a latent dynamic shared by all the series might be related to the
atmospheric weather, while in the case of financial time series, the market’s behavior could
be the underlying latent dynamic.

If this latent dynamic exists, DFM models are a promising choice for smaller multivariate
series (indicatively n < 10, based on our experiments). As the dimensionality increases,
our proposed strategy DFML should be preferred thanks to its efficient way to reduce
dimensionality while still preserving informative content, especially with strongly correlated
datasets. For very large scale datasets (n > 800, beyond the scale of our tests), based on
the current literature, we would advise to employ deep learning models. If the tests with
dynamic factor models, both traditional and machine-learning based, did not give satisfying
results, one should resort to statistical techniques. Especially when the problem size is
small, techniques such as basic VAR or its regularized version are tough competitors to
beat. For small to medium-sized multivariate series (indicatively 10 < n < 30, according
to our assessments), SMURF-ES still offers a good balance between forecasting accuracy and
computational complexity, and should be preferred to the DFML strategy. On the other hand,
if the number of time series becomes larger, deep learning models could be a more flexible
choice.
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Figure 6.2: Graphical models illustrating two different setups for multivariate (n = 2) time series
forecasting: a case without the presence of a latent dynamics (6.2a) and a case displaying
a latent dynamics with a single latent factor (6.2b). Dashed lines indicate unobserved
elements, while latent dependencies are plotted in red.

6.3 limitations of our approach and future work

This thesis represents the first step towards a machine learning based solution of the
multivariate and multiple-step-ahead forecasting problem, considered as the most complex
forecasting problem.

In Section 3.1 we presented the formalization of the multivariate forecasting problem and
we discussed the different approaches to its solution (i. e., global, local, and hybrid).

The domains of global (especially with neural approaches) (Lara-Benítez, Carranza-García,
and Riquelme, 2021) and hybrid forecasting (with a focus on hierarchical forecasting) have
seen an extremely fast evolution in recent years. Due to a combination of lack of time, exper-
tise, and reproducible implementations, we have not been able to compare our approaches
to state-of-the-art techniques in these domains (i. e., deep recurrent network, such as Trans-
formers (Lara-Benítez et al., 2021)), although our experiments showed promising results in
terms of trade-off between forecasting accuracy and computational burden required to pro-
duce the results. Moreover, our assessements focused on problems characterized by highly
dynamical settings. This setting favors models capturing more short-term dependencies in
the data (such as the proposed DFML and SMURF-ES strategies, with small model orders) but
at the same time being a least favorable setting for models based on LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Cho et al., 2014a) cells, specifically built to capture longer
term dependencies.

On a short-term horizon, from this literature analysis, two promising research directions
come naturally.

The first one would aim to deepen the study of neural approaches (such as recurrent
autoencoders) and their integration in the forecasting strategy. The non-linear nature of such
approaches, combined with their capabilities to model long-term temporal dynamics, could
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be beneficial to improve the dimensionality reduction components in the DFML as well as
provide meaningful additional features in SMURF-ES.

The second one would aim to develop hierarchical extensions to the DFML and SMURF-ES

strategy, in order to exploit the intrinsic information available in problems presenting a
hierarchical structure (such as mobility forecasting on a network of roads).

In addition, although we focused on large-scale problems (n > 102), the Big Data revolu-
tion is shifting the focus towards even bigger problems, with the additional complication of
having continuous streams of data.

To address the dimensionality problem one could rely on unsupervised machine learning
techniques (such as clustering (Pathak et al., 2021)) to split the original problem into
smaller sub-problems that could be tackled independently of each other with state-of-the-art
techniques such as the proposed strategies.

To address the streaming issue, further studies on incremental/iterative implementations
of the proposed strategies should be analyzed. In Chapter 4, we empirically validated
an iterative extension of the DFML framework for linear factor estimation techniques and
data-driven factor forecasting techniques, but the modular structure of the framework could
easily support the extension for non-linear factor estimation techniques and model-driven
factor forecasting techniques.

Forecast combination is another relevant approach that has been proven effective by practi-
tioners (see the top-performing techniques in M4 (Makridakis, Spiliotis, and Assimakopoulos,
2020b) and M5 (Makridakis, Spiliotis, and Assimakopoulos, 2020a) competitions) and that
deserves further assessment. Although we did assess its effectiveness (as forecasting compo-
nent in the SMURF-ES strategy), further experiments need to be performed to generalize the
results we obtained and to provide implementation guidelines for multivariate problems.
In addition, forecast combination could also be directly be employed as factor forecasting
technique within the DFML, potentially improving the forecasting capabilities of the strategy
at a reduced computational cost (as it works in the reduced dimensionality factor space).

Last but not least, the work presented in this thesis focus solely on point forecasting
(i. e., predicting a single point for each horizon h), instead of probabilistic forecasting,
which focuses on trying to predict the conditional distribution of the forecasts at each time
step. Several variants of probabilistic forecasting exists (Guen and Thome, 2021) based
respectively on: Monte-Carlo estimation (Laptev et al., 2017; Taieb, Taylor, and Hyndman,
2017a), quantile forecasting (Gasthaus et al., 2019) or predictive distribution approximation
via parametrized distributions (Salinas et al., 2020) or generative models (Koochali, Dengel,
and Ahmed, 2020). Even though both the DFML and SMURF-ES strategies have not been
natively developed for probabilistic forecasting, their modular architecture could easily
be adapted to support probabilistic forecasting, by plugging probabilistic models in their
forecasting components.

6.4 long term perspectives of multivariate multi-step forecasting

On the other hand, on a longer-term horizon, several theoretical problems need to be
addressed.

For instance, a question often neglected in the domain of forecasting is the trade-off
between the computational cost required to train a model and the performance gains offered
by this model with respect to a baseline technique. In the case of Deep Learning, as presented
by the authors of (Thompson et al., 2020), the increase in computational complexity required
to obtain a minimal gain in terms of forecasting error is of several orders of magnitude
(Figure 1.4), making such approaches clearly unsustainable on the long term.

Further work is required to characterize this trade-off (for instance, in a meta-learning
fashion). In addition, the application of techniques such as racing (Birattari et al., 2002)
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or early-stopping/regularization could be beneficial in decreasing the computational cost
while still retaining predictive capabilities.

Another related issue involves dealing with the change of computational paradigm
that is progressively occurring in recent years, often referred as Internet of Things. A
consequence of this shift is that connected devices are becoming more and more pervasive in
people’s everyday life (e. g., smart meters for household consumption, voice-activated digital
assistants, wearable devices). These devices have the capabilities of collecting data through
an array of different sensors and of processing said data directly on-board. This paradigm
change will require novel learning approaches, such as federated learning (Konečný et al.,
2017; McMahan et al., 2017), in order to perform accurate forecasting while still complying
with ethical and privacy-related constraints.

Last but not least, in terms of practical applications, multivariate and multi-step-ahead
approaches to forecasting problems could provide useful insights in contrasting the effect
of anthropogenic climate change. More precisely, better forecasts in terms of renewable
energy production and people’s mobility trends could provide economic benefits as well
as reductions in terms of emissions of several types of pollutants. Moreover, improved
multivariate monitoring and forecasting of environmental conditions through distributed
sensors could help prevent catastrophic events (e. g., floods and forest fires).
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a.1 volatilty definition
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Figure A.1: Graphical representation of OHLC price data on a dummy time series. Time is expressed
as a percentage of calendar days. f represent the fraction of the day in which the trading
is closed. In the case of CAC40, f = 0.6458333.

Before discussing the details of the definition of volatility, we will establish the notation
of all the relevant quantities involved. In our study, we are considering temporal data of
financial instruments traded on a stock market. From a temporal standpoint, a stock market
is characterized by two fundamental quantities: trading days and trading hours. A stock
market’s trading days is the subset of the days of the calendar year in which trading take
place. In every trading day, the market does not allow trading (i.e. is closed) for a fraction of
the day f . Conversely, for the remaining part of the day 1− f , the market is said to be open,
and trading could take place.

For instance, the stocks composing the CAC 40 index are traded on the Euronext NV
market, whose trading hours are from 9 AM to 5:30 PM CET, Monday to Friday. 1 For
instance, after accounting for bank holidays, the year 2016 will have 256 trading days.

For every trading day t, we define the opening price P(o)
t as the price of the considered

instrument at the opening of the trading day. Analogously, we can define the closing price
P(c)

t as the instrument value at the end of the trading day. The high price P(h)
t and low price

1 See Euronext NV calendar for details on the trading times.
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P(l)
t represent the extreme price values of the trading day t, respectively the maximum and

minimum. To summarize:

P(o)
t = Pt09:00 (A.1)

P(h)
t = max

s∈{t09:00,t17:30})
Ps (A.2)

P(l)
t = min

s∈{t09:00,t17:30})
Ps (A.3)

P(c)
t = Pt17:30 (A.4)

(A.5)

An example of the available data, annotated with the different quantities, can be seen in
figure A.1.

In the context of trading, such information is generally summarized in a single box and
whiskers cart, called candlestick charts, where the height of the box represent the difference
between opening and closing prices, while the whiskers represent respectively the extreme
prices of the days (cf. Figure A.2).

P(h)
t

P(c)
t

Upward price
movement for
day t
P(c)

t > P(o)
t

P(o)
t

P(l)
t

P(h)
t

P(o)
t

Downward
price
movement
for day t
P(c)

t < P(o)
t

P(c)
t

P(l)
t

Figure A.2: Candlestick representation of OHLC price data for days displaying upward/downward
price movements.

In the continuation of the thesis, we will refer to the closing price P(c)
t as price (A.6) at

time t.

Pt = P(c)
t (A.6)

This will allow us to define, in turn, the notions of continuously compounded return (A.7)
and return (A.8).

rt = ln
(

Pt

Pt−1

)
= ln (Pt)− ln (Pt−1) (A.7)

Rt =
Pt − Pt−1

Pt−1
=

Pt

Pt−1
− 1 (A.8)

In addition to the price, we define the volume Vt as the number of shares that have been
traded (i.e. they changed owner), during a given trading day t.
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Figure A.3: Representation of the evolution of the stock market valuation of Bouygues Telecom (one
of the composing series of CAC40) as a candlebar graph.

a.2 literature review

In finance, volatility is a measure of the degree of variation of a trading price series over time.
It can be also seen as a quantification of risk associated to the investment, capturing how
strongly the value of the stock is going to oscillate at a certain moment in time. It should be
noted that, by being a measure of dispersion, volatility does not give precise information on
the direction of such oscillations, and that specific measures have been developed to focus
primarily on the dispersion of values associated to economic losses. (cf. (Poon and Granger,
2003)). Unlike prices or returns, volatility is not directly observable (i.e. latent variable); thus
a proxy needs to be employed (cf. (Santamaría-Bonfil, Frausto-Solís, and Vázquez-Rodarte,
2015)). The choice of such proxies is highly dependent on the nature and the granularity of
the available data.

a.2.0.1 Volatility as variance

The problem of measuring the degree of variation of a given time series over time can also
be seen as the characterization of the dispersion of the data over time. With this in mind, the
most natural proxy for the volatility is standard deviation of the original price series or a
derived measure. As a matter of fact, (Poon and Granger, 2003) proposes to define volatility
as the empirical standard deviation of the continuously compounded return series, over a
time window of N observations.

σ̂
(SD)
t =

√√√√ 1
N − 1

N−1

∑
i=0

(rt−i − r̄)2 (A.9)

where r̄ corresponds to the average continuously compounded return for the N time
frame. The sample size N, however, is an important parameter to correctly capture the
variability of the underlying data. Common choices of N are corresponding to the number
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of trading days in a week (cf. (Santamaría-Bonfil, Frausto-Solís, and Vázquez-Rodarte,
2015)) on in a month (cf. (Mittnik, Robinzonov, and Spindler, 2015)), in order compute
weekly/monthly volatility.

Such definition has several advantages. Firstly, the empirical standard deviation σ̂(SD) is a
distribution free statistic. As such, it could be computed regardless of the assumptions made
on the nature of the underlying distribution of the data. Secondly, only the knowledge of
daily closing prices or returns is needed for its computation.

It should be noted that when r̄ = 0, this proxy reduces to the scaled sum of the squared
continuously compounded returns.

σ̂
(SD)
t =

√√√√ 1
n− 1

n−1

∑
i=0

r2
t−i (A.10)

Such formula could then be applied on de-trended time series (that by construction have
r̄ = 0). Conversely, a null mean does not necessarily imply the absence of a trend.

a.2.0.2 Volatility as a proxy of the coarse grained intraday information

A common practice, in the financial world, is to augment the available price information
with additional discrete intraday measures, namely opening, maximum (high), minimum
(low), closing prices and the volume of transactions. As previously mentioned, this data
format is usually referred as OHLC. The study by (Garman and Klass, 1980) propose to
include such supplementary available information to improve the statistical properties of
the proxy, yielding to an estimator with reduced bias and variance (cf. Table A.1). In the
following, we will introduce the different proposed estimator, organizing them according to
information required to compute them.

Estimator ŷ Efficiency = Eff(ŷ) = var(σ̂0(t))
var(ŷ)

σ̂0
t 1

σ̂1
t 2

σ̂2
t ≈ 5.2

σ̂3
t ≈ 6.2

σ̂4
t ≈ 7.4

σ̂5
t ≈ 7.4

σ̂6
t ≈ 8.4

Table A.1: Efficiency of the proposed volatility estimators in the literature ((Garman and Klass, 1980)).
The baseline efficiency value is 1, while higher values represent better efficiency.

close prices The first estimator σ̂0, which they propose as benchmark value, simply
consist of the squared value of the returns (i.e. the ratio of the logarithms of the closing
price time series):

σ̂0
t =

[
ln

(
P(c)

t+1

P(c)
t

)]2

= r2
t (A.11)
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open/close prices The second proposition σ̂1
t is able to reduce the variance of the

estimator, by including the opening price, and computing a weighted average between two
components, representing respectively the nightly and daily volatility:

σ̂1
t =

1
2 f
·
[

ln

(
P(o)

t+1

P(c)
t

)]2

︸ ︷︷ ︸
Nightly volatility

+
1

2(1− f )
·
[

ln

(
P(c)

t

P(o)
t

)]2

︸ ︷︷ ︸
Intraday volatility

(A.12)

The value of f is by definition bounded in the interval [0, 1], with 0 representing the case
when the market never close and 1 indicating that the market is always closed In the case
of CAC40, we have that f > 1− f , since trading is only performed of roughly one third of
the day. In this case, the weighting scheme proposed in A.12 will give higher weight to the
intraday volatility, with respect to the nightly one.

high/low prices The third estimator, derived by (Parkinson, 1980) through the model-
ing of the price evolution as a stochastic diffusion process with unknown variance, bases its
estimation on a function of the variation range (i.e. the difference between maximum and
minimum value for the current trading day):

σ̂2
t =

1
2 ln 4

·
[

ln

(
P(h)

t

P(l)
t

)]2

(A.13)

where the value 1
2 ln 4 corresponds to the variance of the distribution of the high-low

displacement difference, under the assumption of a stochastic Wiener process (i.e. with
normally distributed increments).

ohlc prices (Garman and Klass, 1980) further improves the efficiency of the estimator
in Equation A.13 by including the information concerning nightly volatility.

σ̂3
t =

a
f
·
[

ln

(
P(o)

t+1

P(c)
t

)]2

︸ ︷︷ ︸
Nightly volatility

+
1− a
1− f

· σ̂2(t)︸ ︷︷ ︸
Intraday volatility

(A.14)

where a is a weighting parameter, whose optimal value, according to the authors is shown
to be 0.17, regardless of the value of f .

Furthermore, the same study introduces a family of estimators based on the normalization
of the maximum, minimum and closing values by the opening price of the considered day.
We can then define:

u = ln

(
P(h)

t

P(o)
t

)
d = ln

(
P(l)

t

P(o)
t

)
c = ln

(
P(c)

t

P(o)
t

)
(A.15)

where u is the normalized high price, d is the normalized low price and c is the normalized
closing price.

Given this derived information, we can derive Equation A.16, by starting from a general,
analytic form for the estimator, and then deriving the optimal values of the coefficient by
minimizing the estimation variance.
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σ̂4
t = 0.511(u− d)2 − 0.019[c(u + d)− 2ud]− 0.383c2 (A.16)

The values of the coefficients are then derived by assuming that the price dynamics
follows a Brownian motion and enforcing scale invariance properties and price and time
symmetry conditions. For all the details concerning the proof, we refer the interested reader
to (Garman and Klass, 1980).

Such estimator is also employed in (Xiong, Nichols, and Shen, 2015) using daily data, and
given as input to a deep neural network, along with the prices and the volume of search
engine research concerning financial market related keywords in order to provide a forecast
of future volatility.

Equation A.17 is derived from Equation A.16 by eliminating the cross product terms.
Even though this formulation is simplified, and easily computable, it is shown to have a
comparable efficiency to the analogous more complex estimator A.1.

σ̂5
t = 0.511(u− d)2 − (2 ln 2− 1)c2 (A.17)

Last but not least, the best estimator in terms of estimation variance efficiency is obtained
by combining the overnight volatility measure with the optimal estimator described in
Equation A.16.

σ̂6
t =

a
f
· log

(
P(o)

t+1

P(c)
t

)2

︸ ︷︷ ︸
Nightly volatility

+
1− a
1− f

· σ̂4(t)︸ ︷︷ ︸
Intraday volatility

(A.18)

a.2.0.3 Volatility as a proxy of the fine grained intraday information

In conclusion, if a finer data granularity is available, for instance intraday data, the realized
variance of the series can be used as a proxy, as proposed by Hansen and Lunde (Hansen
and Lunde, 2005).

The return over a time interval with length 1
m on day t Rt,i,m, given intraday observations

i ∈ {1, · · · , m}, and trading days t ∈ {1, · · · , n} is computed as:

Rt,i,m = Pt− i−1
m
− Pt− i

m
(A.19)

With this available data the daily return rt can be easily computed by aggregating the
intraday observations:

Rt =
m

∑
i=1

Rt,i,m (A.20)

The realized variance for trading day t is then computed as the squared sum of the m
available intraday returns:

RV(m)(t) =
m

∑
i=1

r2
t,i,m (A.21)

The proxy is then obtained by computing the realized variance and accounting for the
fact that financial markets are opened for trading during a subset of the whole trading days,
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which in turn only allows to observe s values out of the m that compose the trading day.
The realized variance is then scaled by a coefficient representing the daily price variance
normalized by the aggregated realized variance over all the n observed trading days.

(σ̂RV
t )2 =

1
n ∑n

k=1(rk − µ̂k)
2

1
n ∑n

k=1 RV(s)(k)
RV(s)(t) (A.22)

For additional details concerning the derivation of the coefficient, we refer the interested
reader to (Hansen and Lunde, 2005).

Given the available OHLC data, we will opt for the proxy proposed in (Garman and Klass,
1980).
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b.1 factor estimation and forecasting assessment

b.1.1 Datasets - Correlation Analysis

Figure B.1: Electricity - Correlation matrix of the underlying time series composing the dataset,
using Pearson’s correlation coefficient ρ
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Figure B.2: Mobility - Correlation matrix of the underlying time series composing the dataset, using
Pearson’s correlation coefficient ρ
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Figure B.3: Traffic - Correlation matrix of the underlying time series composing the dataset, using
Pearson’s correlation coefficient ρ
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b.1.2 Supplementary results

b.1.2.1 Electricity

Figure B.4: Electricity - Graphical representation according to (Demšar, 2006) of the results of
Friedman statistical test (with post-hoc Nemenyi test) comparing the NNMSE of the best
20 methods against each other, aggregated across all horizons h. The methods are ordered
according to their performance from left to right (the leftmost the best), while the black
bar connects methods that are not significantly different (at p = 0.05).
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Table B.1: Electricity Naive Normalized MSE for H ∈ {4, 6}. The content of the cell cij represents the
model using the jth dimensionality reduction technique with the ith forecasting method.
The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the
proposed method outperforms the Naive method. Bold text denotes the best configuration
for the given horizon H.

H=4 H=6

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat

DF-ES 0.5418 0.7396 0.6106 0.4415 0.4424 0.6026 0.6314 0.6594 0.4772 0.4928

DF-Theta 0.5436 0.7482 0.6094 0.4416 0.442 0.5681 0.6306 0.6593 0.4772 0.4884

DF-Combined 0.5402 0.7443 0.6116 0.4391 0.4421 0.6024 0.6325 0.6227 0.4773 0.5236

DF-VAR 0.4684 0.7245 0.4463 0.4149 0.4208 0.4692 0.5191 0.5378 0.4369 0.4326

DF-ML

DF-Lazy-DIR 0.3202 0.4561 0.3955 0.4318 0.3773 0.3195 0.3746 0.379 0.4018 0.3751

DF-Lazy-REC 0.3297 0.4904 0.4526 0.439 0.3891 0.336 0.4418 0.432 0.4448 0.4684

DF-MIMO 0.3498 0.4331 0.3959 0.4481 0.3716 0.341 0.3869 0.3823 0.4015 0.388

DF-LightGBM-DIR 0.6249 0.5435 0.5902 0.4426 0.4776 0.6985 0.6227 0.6636 0.4936 0.5117

DF-LightGBM-REC 0.56 0.5395 0.5575 0.4895 0.5166 0.6882 0.5866 0.6103 0.5097 0.5567

UNI-Stat

UNI-Naive 1 1 1 1 1 1 1 1 1 1

UNI-ES 0.5881 0.5881 0.5881 0.5881 0.5881 0.623 0.623 0.623 0.623 0.623

UNI-Theta 0.4722 0.4722 0.4722 0.4722 0.4722 0.499 0.499 0.499 0.499 0.499

UNI-Comb 0.59 0.59 0.59 0.59 0.59 0.6266 0.6266 0.6266 0.6266 0.6266

Table B.2: Electricity Naive Normalized MSE for H ∈ {12, 24}. The content of the cell cij represents
the model using the jth dimensionality reduction technique with the ith forecasting
method. The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates
that the proposed method outperforms the Naive method. Bold text denotes the best
configuration for the given horizon H.

H=12 H=24

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat

DF-ES 0.6357 0.7244 0.6648 0.5075 0.5188 0.6793 2.797 0.6316 0.5959 0.5856

DF-Theta 0.5928 0.7261 0.6648 0.5079 0.5183 0.6388 2.7969 0.6313 0.5957 0.5856

DF-Combined 0.6371 0.747 0.6649 0.5115 0.5575 0.6825 3.3199 0.6334 0.5985 0.6162

DF-VAR 0.4744 0.5188 0.4464 0.4496 0.4649 0.5352 2.2798 0.5358 0.5226 0.5227

DF-ML

DF-Lazy-DIR 0.2878 0.4179 0.3615 0.4339 0.4621 0.3307 0.4616 0.451 0.485 0.4691

DF-Lazy-REC 0.3747 0.4957 0.569 0.4682 0.4894 0.4429 0.5979 0.5798 0.569 0.5513

DF-MIMO 0.304 0.4445 0.3656 0.4384 0.4878 0.341 0.457 0.4633 0.491 0.4766

DF-LightGBM-DIR 0.7044 0.641 0.5773 0.5217 0.5494 0.3284 0.4988 0.4403 0.4824 0.4683

DF-LightGBM-REC 0.7427 0.5387 0.5251 0.5267 0.5503 0.842 0.5783 0.8388 0.5647 0.5836

UNI-Stat

UNI-Naive 1 1 1 1 1 1 1 1 1 1

UNI-ES 0.6504 0.6504 0.6504 0.6504 0.6504 0.6746 0.6746 0.6746 0.6746 0.6746

UNI-Theta 0.5295 0.5295 0.5295 0.5295 0.5295 0.5802 0.5802 0.5802 0.5802 0.5802

UNI-Comb 0.6537 0.6537 0.6537 0.6537 0.6537 0.6783 0.6783 0.6783 0.6783 0.6783
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b.1.2.2 Traffic

Figure B.5: Traffic - Graphical representation according to (Demšar, 2006) of the results of Friedman
statistical test (with post-hoc Nemenyi test) comparing the NNMSE of the best 20 methods
against each other, aggregated across all horizons h. The methods are ordered according
to their performance from left to right (the leftmost the best), while the black bar connects
methods that are not significantly different (at p = 0.05).
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Table B.3: Traffic Naive Normalized MSE for H ∈ {4, 6}. The content of the cell cij represents the
model using the jth dimensionality reduction technique with the ith forecasting method.
The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the
proposed method outperforms the Naive method. Bold text denotes the best configuration
for the given horizon H.

H=4 H=6

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat

DF-ES 0.5637 0.5819 0.6036 0.4823 0.4788 0.5726 0.4589 0.5386 0.4858 0.4731

DF-Theta 0.5236 0.576 0.6037 0.4823 0.4788 0.5267 0.4583 0.542 0.4857 0.4731

DF-Combined 0.5639 0.5961 0.5731 0.4826 0.5026 0.5729 0.4594 0.5404 0.4835 0.4754

DF-VAR 0.5127 0.6259 0.5115 0.4667 0.4497 0.4718 0.4411 0.4451 0.4538 0.4433

DF-ML

DF-Lazy-DIR 0.3502 0.437 0.4234 0.4303 0.4659 0.3599 0.3455 0.3719 0.4631 0.3711

DF-Lazy-REC 0.4746 0.399 0.4594 0.445 0.4693 0.4532 0.4775 0.5467 0.6137 0.3735

DF-MIMO 0.3793 0.4264 0.4421 0.436 0.5122 0.3949 0.3378 0.3823 0.4588 0.37

DF-LightGBM-DIR 0.7315 0.6496 0.5325 0.4996 0.6158 0.5644 0.4804 0.4823 0.4648 0.559

DF-LightGBM-REC 0.6973 0.7253 0.6136 0.4998 0.6084 0.6133 0.5077 0.5237 0.5113 0.5183

UNI-Stat

UNI-Naive 1 1 1 1 1 1 1 1 1 1

UNI-ES 0.5157 0.5157 0.5157 0.5157 0.5157 0.5062 0.5062 0.5062 0.5062 0.5062

UNI-Theta 0.4731 0.4731 0.4731 0.4731 0.4731 0.4645 0.4645 0.4645 0.4645 0.4645

UNI-Comb 0.5226 0.5226 0.5226 0.5226 0.5226 0.5129 0.5129 0.5129 0.5129 0.5129

Table B.4: Traffic Naive Normalized MSE for H ∈ {12, 24}. The content of the cell cij represents the
model using the jth dimensionality reduction technique with the ith forecasting method.
The NNMSE for the Naive method is equal to 1. An NNMSE < 1 indicates that the
proposed method outperforms the Naive method. Bold text denotes the best configuration
for the given horizon H.

H=12 H=24

PCA LSTM GRU Base Deep PCA LSTM GRU Base Deep

DF-Stat

DF-ES 0.5786 0.6448 0.583 0.5128 0.5033 0.6083 0.5209 0.5728 0.568 0.5385

DF-Theta 0.5105 0.6089 0.5829 0.5128 0.5037 0.5432 0.5243 0.5728 0.5679 0.539

DF-Combined 0.5792 0.6678 0.583 0.5187 0.5196 0.6097 0.5228 0.5692 0.5881 0.5578

DF-VAR 0.4583 0.4797 0.4958 0.454 0.4453 0.4966 0.5102 0.4993 0.4903 0.4885

DF-ML

DF-Lazy-DIR 0.3823 0.4649 0.4177 0.4307 0.4325 0.4123 0.4799 0.489 0.4568 0.4557

DF-Lazy-REC 0.4723 0.716 0.5079 0.5039 0.5264 0.6572 41.4895 2.3971 0.5305 0.6124

DF-MIMO 0.4211 0.5064 0.4268 0.4469 0.4401 0.4769 0.5116 0.4933 0.467 0.4529

DF-LightGBM-DIR 0.6798 0.6337 0.5732 0.5711 0.5125 0.4182 0.4606 0.4538 0.4577 0.4698

DF-LightGBM-REC 0.8134 0.5839 0.5478 0.4921 0.4648 0.8062 0.7161 0.7522 0.5216 0.5378

UNI-Stat

UNI-Naive 1 1 1 1 1 1 1 1 1 1

UNI-ES 0.5154 0.5154 0.5154 0.5154 0.5154 0.5423 0.5423 0.5423 0.5423 0.5423

UNI-Theta 0.4801 0.4801 0.4801 0.4801 0.4801 0.5167 0.5167 0.5167 0.5167 0.5167

UNI-Comb 0.5206 0.5206 0.5206 0.5206 0.5206 0.5446 0.5446 0.5446 0.5446 0.5446
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b.2 iterative factor estimation and automatic hyperparameter selection

b.2.1 Batch versus iterative PCA

Table B.5: Synthetic multivariate time series: NMSE (averaged over all the continuation sets) of
the different forecasting methods.Comparison between batch and iterative PCA. The
superscript + denotes a significant improvement (pv=0.05) while using the iterative PCA
calculation instead of the batch one. The bold notation is used to identify the best method
for each horizon.

Rolling DFMLPC DFM

Direct Iterated MIMO

n H Batch Online Batch Online Batch Online Batch Online

20 2 0.245 0.238 0.258 0.259 0.263 0.249 0.288 0.272

20 5 0.265 0.268 0.325 0.325 0.287 0.298 0.343 0.314
+

20 10 0.280 0.279 0.356 0.340 0.303 0.302 0.362 0.341

20 15 0.302 0.301 0.381 0.376 0.335 0.325 0.391 0.360
+

20 20 0.306 0.302 0.385 0.380 0.339 0.326 0.436 0.397
+

20 50 0.340 0.344 0.414 0.408 0.376 0.378 0.666 0.567
+

50 2 0.225 0.133+
0.226 0.137

+
0.228 0.137

+
0.233 0.140

+

50 5 0.221 0.129+
0.228 0.141

+
0.224 0.133

+
0.235 0.147

+

50 10 0.227 0.134+
0.232 0.150

+
0.231 0.138

+
0.233 0.151

+

50 15 0.232 0.140+
0.240 0.156

+
0.235 0.144

+
0.241 0.164

+

50 20 0.237 0.148+
0.245 0.163

+
0.241 0.152

+
0.244 0.177

+

50 50 0.264 0.179+
0.270 0.185

+
0.270 0.182

+
0.286 0.228

+

100 2 0.314 0.180+
0.315 0.183

+
0.315 0.180+

0.320 0.200
+

100 5 0.320 0.193+
0.329 0.207

+
0.324 0.193+

0.337 0.243
+

100 10 0.322 0.213
+

0.332 0.356
+

0.324 0.210+
0.352 0.289

+

100 15 0.329 0.225
+

0.341 99.729 0.332 0.224+
0.367 0.321

+

100 20 0.331 0.240
+

0.343 134.651 0.334 0.239+
0.380 0.341

+

100 50 0.359 0.332
+

0.369 862.325 0.363 0.307+
0.477 0.443

+

200 2 0.254 0.121+
0.255 0.122

+
0.255 0.122

+
0.257 0.124

+

200 5 0.252 0.120
+

0.256 0.127
+

0.253 0.118+
0.255 0.125

+

200 10 0.255 0.128
+

0.259 1.819 0.256 0.123+
0.258 0.138

+

200 15 0.258 0.134
+

0.263 5.787 0.260 0.130+
0.261 0.154

+

200 20 0.261 0.151
+

0.266 12.806 0.263 0.138+
0.265 0.170

+

200 50 0.279 0.180
+

0.284 65.992 0.280 0.176+
0.289 0.246

+

400 2 0.278 0.119
+

0.278 0.119
+

0.278 0.117+
0.278 0.119

+

400 5 0.277 0.115
+

0.280 0.117
+

0.277 0.113+
0.278 0.120

+

400 10 0.281 0.129
+

0.286 0.145
+

0.282 0.121+
0.283 0.138

+

400 15 0.285 0.146
+

0.290 0.149
+

0.285 0.132+
0.286 0.155

+

400 20 0.289 0.170
+

0.295 7.144 0.289 0.143+
0.291 0.170

+

400 50 0.311 0.234
+

0.319 283.169 0.311 0.204+
0.325 0.243

+

1000 2 0.287 0.111
+

0.287 0.111
+

0.287 0.109+
0.287 0.111

+

1000 5 0.287 0.107
+

0.288 0.107
+

0.287 0.105+
0.287 0.106

+

1000 10 0.291 0.119
+

0.293 0.121
+

0.291 0.113+
0.290 0.114

+

1000 15 0.294 0.138
+

0.297 0.158
+

0.294 0.121+
0.294 0.122

+

1000 20 0.298 0.173
+

0.300 0.294 0.298 0.131+
0.297 0.132

+

1000 50 0.319 0.440
+

0.322 50.946 0.319 0.188
+

0.318 0.180+
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Table B.6: Earth Surface Temperature series: NMSE (averaged over all the continuation sets) of
the different forecasting methods.Comparison between batch and iterative PCA. The
superscript + denotes a significant improvement (pv=0.05) while using the iterative PCA
calculation instead of the batch one. The bold notation is used to identify the best method
for each horizon.

Rolling DFMLPC DFM

Direct Iter MIMO

n H Batch Online Batch Online Batch Online Batch Online

100 2 0.106 0.106 0.110 0.107 0.110 0.109 0.109 0.106

100 5 0.118 0.118 0.144 0.206 0.125 0.128 0.140 0.137

100 10 0.118 0.118 0.178 0.173 0.127 0.123 0.151 0.148

100 15 0.114 0.112 0.175 0.172 0.120 0.120 0.165 0.153
+

100 20 0.112 0.111 0.170 0.168 0.118 0.120 0.182 0.166
+

100 50 0.111 0.111 0.173 0.173 0.117 0.112
+

0.307 0.282
+

200 2 0.195 0.195 0.199 0.197 0.198 0.195 0.124 0.135
+

200 5 0.274 0.266 0.345 0.337 0.281 0.269 0.176 0.184

200 10 0.259 0.253 0.388 0.369
+

0.278 0.268 0.195 0.191

200 15 0.242 0.237 0.399 0.388
+

0.254 0.244 0.211 0.206

200 20 0.269 0.262 0.412 99.062 0.270 0.269 0.226 0.225

200 50 0.253 0.245 0.434 43.889 0.266 0.256 0.290 0.285
+
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Table B.7: Volatility time series: NMSE (averaged over all the continuation sets) of the different
forecasting methods. Comparison between batch and iterative PCA. The superscript +

denotes a significant improvement (pv=0.05) while using the iterative PCA calculation
instead of the batch one. The bold notation is used to identify the best method for each
horizon.

Rolling DFMLPC DFM

Direct Iter MIMO

Ind H Batch Online Batch Online Batch Online Batch Online

σ0 2 0.405 0.414 0.408 0.413 0.423 0.437
+

0.406 0.410

σ0 5 0.421 0.430 0.432 0.429 0.454 0.452 0.424 0.428

σ0 10 0.418 0.422 0.427 0.427 0.453 0.456 0.420 0.422

σ0 15 0.418 0.422 0.437 0.426 0.454 0.456 0.420 0.422

σ0 20 0.417 0.418 0.456 0.447 0.458 0.452 0.419 0.419

σ0 50 0.422 0.426 0.510 0.460
+

0.482 0.490 0.424 0.424

σ1 2 0.270 0.272 0.270 0.273 0.299 0.296 0.263 0.264

σ1 5 0.385 0.392 0.402 0.397 0.426 0.421 0.380 0.382

σ1 10 0.364 0.368 0.401 0.406 0.400 0.401 0.370 0.372

σ1 15 0.368 0.371 0.420 0.414 0.419 0.418 0.374 0.374

σ1 20 0.348 0.354
+

0.420 0.436 0.401 0.387 0.367 0.367

σ1 50 0.367 0.369 0.466 0.481 0.425 0.423 0.368 0.368

σ2 2 0.315 0.312 0.311 0.308 0.326 0.322 0.305 0.305

σ2 5 0.314 0.318 0.331 0.335 0.336 0.336 0.315 0.311

σ2 10 0.315 0.317 0.350 0.353 0.335 0.334 0.330 0.325
+

σ2 15 0.308 0.314 0.378 0.382 0.340 0.335 0.339 0.333
+

σ2 20 0.320 0.318 0.390 0.405 0.352 0.347 0.346 0.339
+

σ2 50 0.329 0.332 0.513 0.493 0.404 0.407 0.365 0.361
+

σ3 2 0.279 0.265 0.280 0.265 0.284 0.279 0.273 0.261

σ3 5 0.338 0.350 0.343 0.345 0.358 0.348
+

0.332 0.330

σ3 10 0.329 0.335 0.342 0.344 0.362 0.367 0.341 0.333
+

σ3 15 0.325 0.332 0.354 0.348 0.362 0.360 0.350 0.347

σ3 20 0.324 0.332 0.368 0.376 0.381 0.377 0.355 0.349
+

σ3 50 0.343 0.344 0.365 0.399 0.407 0.398 0.372 0.370
+

σ4 2 0.304 0.308 0.295 0.310 0.348 0.341 0.286 0.284

σ4 5 0.317 0.322 0.320 0.322 0.338 0.339 0.315 0.317

σ4 10 0.308 0.308 0.318 0.320 0.334 0.324
+

0.322 0.321

σ4 15 0.318 0.317 0.339 0.340 0.380 0.364 0.331 0.332

σ4 20 0.307 0.307 0.329 0.330 0.327 0.325 0.338 0.335

σ4 50 0.339 0.337 0.336 0.339 0.444 0.444 0.359 0.357
+

σ5 2 0.301 0.306 0.296 0.312 0.328 0.324 0.286 0.284

σ5 5 0.317 0.321 0.323 0.325 0.336 0.340 0.315 0.316

σ5 10 0.308 0.309 0.320 0.326 0.344 0.330 0.322 0.320

σ5 15 0.318 0.314 0.327 0.329 0.361 0.352 0.332 0.332

σ5 20 0.311 0.308 0.331 0.335 0.333 0.328 0.339 0.335
+

σ5 50 0.336 0.339 0.350 0.342
+

0.446 0.440 0.360 0.357
+

σ6 2 0.299 0.308 0.298 0.305 0.317 0.312 0.298 0.300

σ6 5 0.314 0.317 0.318 0.315 0.327 0.330 0.311 0.317

σ6 10 0.305 0.305 0.317 0.319 0.333 0.337 0.317 0.317

σ6 15 0.304 0.304 0.326 0.319 0.339 0.344 0.323 0.323

σ6 20 0.306 0.307 0.335 0.324 0.339 0.324 0.330 0.330

σ6 50 0.328 0.331 0.332 0.325 0.430 0.419 0.351 0.350
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b.2.2 Manual versus automatic hyperparameter search strategy

Table B.8: Synthetic multivariate time series: NMSE (averaged over all the continuation sets) of the
different forecasting methods

n H DFM DFMLPC DFML’PC DFMLA DFML’A RNN DSE PLS UNI VAR SSA NAIVE

20 5 0.815 0.813 0.783 0.834 0.815 0.793 0.872 0.891 1.012 0.819 0.913 1.913

20 10 0.863 0.851 0.829 0.872 0.854 0.824 0.925 0.915 1.058 0.62 0.925 1.925

20 20 0.914 0.895 0.875 0.911 0.898 0.862 0.957 0.929 1.078 0.909 0.95 1.977

50 5 0.818 0.819 0.782 0.842 0.809 0.833 0.890 0.909 1.004 0.821 0.921 1.909

50 10 0.851 0.846 0.816 0.868 0.839 0.863 0.906 0.924 1.043 0.850 0.922 1.929

50 20 0.885 0.875 0.854 0.895 0.875 0.893 0.923 0.930 1.069 0.881 0.929 1.961

100 5 0.852 0.857 0.824 0.909 0.846 0.916 0.922 0.957 1.026 0.913 0.911 1.901

100 10 0.872 0.876 0.853 0.924 0.873 0.934 0.958 0.963 1.062 0.908 0.914 1.919

100 20 0.852 0.840 0.809 0.883 0.827 0.901 1.028 0.944 1.032 0.861 0.919 1.972

200 5 0.882 0.881 0.854 0.942 - 0.956 - - 1.022 - - 1.907

200 10 0.895 0.893 0.872 0.952 - 0.971 - - 1.060 - - 1.928

200 20 0.909 0.908 0.892 0.958 - 0.967 - - 1.086 - - 1.972

400 5 0.898 0.902 0.892 0.984 - 0.985 - - - - - 1.888

400 10 0.906 0.908 0.903 0.991 - 0.994 - - - - - 1.907

400 20 0.915 0.916 0.915 0.993 - 0.998 - - - - - 1.949

1000 5 0.915 0.919 0.925 1.062 - - - - - - - 1.893

1000 10 0.919 0.922 0.930 1.061 - - - - - - - 1.915

1000 20 0.924 0.926 0.934 1.058 - - - - - - - 1.958

Table B.9: Earth Surface Temperature series: NMSE (averaged over all the continuation sets) of the
different forecasting methods

n H DFM DFMLPC DFML’PC DFMLA DFML’A RNN PLS UNI NAIVE

100 2 0.099 0.111 0.099 0.566 0.594 0.099 0.227 0.265 0.692

100 5 0.13 0.151 0.092 1.144 0.394 0.102 0.664 0.271 1.981

100 10 0.142 0.164 0.093 1.709 0.6 0.113 0.673 0.295 2.247

100 20 0.165 0.173 0.089 1.721 0.873 0.11 0.653 0.255 2.165

100 50 0.288 0.187 0.091 1.621 0.838 0.111 0.612 0.259 1.894

200 2 0.124 0.198 0.14 0.7 0.483 0.188 0.49 0.33 0.703

200 5 0.155 0.292 0.135 1.131 0.596 0.183 0.834 0.328 1.852

200 10 0.179 0.352 0.135. 1.329 0.613 0.202 0.854 0.327 2.125

200 20 0.206 0.381 0.157 1.472 0.645 0.229 0.837 0.34 2.038

200 50 0.266 0.405 0.169 1.721 0.764 0.242 0.807 0.344 1.801
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Table B.10: Volatility time series: NMSE (averaged over all the continuation sets) of the different
forecasting methods

Ind H DFM DFMLPC DFML’PC DFMLA DFML’A RNN PLS UNI NAIVE

σ0 2 0.417 0.439 0.409 0.462 0.465 0.463 0.416 0.564 0.774

σ0 5 0.424 0.439 0.413 0.463 0.468 0.442 0.421 0.563 0.838

σ0 10 0.426 0.435 0.454 0.461 0.462 0.439 0.419 0.561 0.871

σ0 20 0.434 0.445 0.425 0.465 0.474 0.446 0.423 0.573 0.753

σ0 50 0.433 0.449 0.431 0.465 0.472 0.443 0.438 0.573 0.759

σ1 2 0.362 0.391 0.358 0.422 0.444 0.382 0.369 0.484 0.617

σ1 5 0.363 0.373 0.354 0.416 0.425 0.382 0.364 0.492 0.694

σ1 10 0.37 0.381 0.354 0.414 0.425 0.379 0.361 0.494 0.685

σ1 20 0.384 0.397 0.383 0.423 0.433 0.385 0.39 0.509 0.718

σ1 50 0.389 0.411 0.383 0.430 0.454 0.390 0.387 0.518 0.647

σ2 2 0.305 0.318 0.309 0.384 0.406 0.333 0.321 0.41 0.518

σ2 5 0.31 0.317 0.304 0.380 0.394 0.349 0.316 0.404 0.553

σ2 10 0.324 0.323 0.3 0.376 0.389 0.347 0.316 0.407 0.522

σ2 20 0.35 0.343 0.354 0.385 0.416 0.360 0.338 0.438 0.534

σ2 50 0.375 0.383 0.328 0.402 0.421 0.399 0.326 0.493 0.543

σ3 2 0.322 0.335 0.332 0.426 0.441 0.356 0.341 0.407 0.507

σ3 5 0.325 0.334 0.323 0.419 0.433 0.363 0.336 0.416 0.587

σ3 10 0.338 0.345 0.328 0.420 0.431 0.364 0.337 0.422 0.587

σ3 20 0.364 0.367 0.354 0.433 0.445 0.379 0.36 0.453 0.59

σ3 50 0.386 0.388 0.344 0.436 0.460 0.403 0.345 0.506 0.561

σ4 2 0.3 0.312 0.314 0.389 0.412 0.332 0.318 0.392 0.523

σ4 5 0.304 0.319 0.309 0.388 0.397 0.326 0.316 0.396 0.567

σ4 10 0.319 0.331 0.302 0.385 0.406 0.340 0.315 0.4 0.511

σ4 20 0.344 0.34 0.328 0.388 0.426 0.359 0.329 0.427 0.494

σ4 50 0.373 0.386 0.329 0.405 0.402 0.388 0.322 0.504 0.536

σ5 2 0.299 0.311 0.312 0.389 0.412 0.329 0.317 0.391 0.521

σ5 5 0.304 0.317 0.304 0.387 0.400 0.341 0.316 0.394 0.564

σ5 10 0.319 0.327 0.301 0.387 0.402 0.336 0.315 0.398 0.51

σ5 20 0.345 0.341 0.309 0.389 0.430 0.352 0.329 0.426 0.495

σ5 50 0.373 0.383 0.328 0.395 0.410 0.405 0.322 0.504 0.535

σ6 2 0.297 0.312 0.312 0.385 0.428 0.322 0.325 0.385 0.506

σ6 5 0.299 0.309 0.302 0.380 0.415 0.334 0.314 0.39 0.554

σ6 10 0.312 0.32 0.296 0.381 0.423 0.356 0.313 0.4 0.507

σ6 20 0.336 0.34 0.319 0.386 0.428 0.351 0.327 0.424 0.491

σ6 50 0.365 0.382 0.324 0.401 0.433 0.401 0.319 0.494 0.528
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A P P E N D I X C - S M U R F - E S S U P P L E M E N TA RY M AT E R I A L

This document provides the experimental results for two different case studies concerning
Australian and Italian wind farms, respectively. Particularly, the figures show all analyzed
wind power forecasting models. The figures are grouped by the corresponding type of
analysis:

• Normalized MSE boxplot

– Australian Case Study

– Italian Case Study

• Error Mean-Variance Analysis

– Australian Case Study

– Italian Case Study

• Error Tail Analysis

– Australian Case Study

– Italian Case Study

• Computational Time Analysis

– Australian Case Study

– Italian Case Study

All details are described in the manuscript.
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c.1 normalized mse boxplot

c.1.1 Australian Case Study
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c.1.2 Italian Case Study
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c.2 bi-variate plot

c.2.1 Australian Case Study
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c.3 error tail analysis

c.3.1 Australian Case Study
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Figure C.5: Visualization of the expected value (mean), VaR, and cVaR across the forecasting horizon
for all models - Australian case study. The lower the metric value is, the smaller is
the risk (in terms of absolute forecasting error) that we are going to expect using the
corresponding method.

[ February 19, 2022 at 15:43 – classicthesis v4.6 ]



C.3 error tail analysis 179

c.3.2 Italian Case Study
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Figure C.6: Visualization of the expected value (mean), VaR, and cVaR across the forecasting horizon
for all models - Italian case study. The lower the metric value is, the smaller is the risk (in
terms of absolute forecasting error) that we are going to expect using the corresponding
method.
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c.4 computational analysis

c.4.1 Australian Case Study
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Figure C.7: Spread of the computational time across K trials, Australian Case Study

c.4.2 Italian Case Study
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Figure C.8: Spread of the computational time across K trials, Italian Case Study
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