Etudiant (2012-2013): INFO-H-414 - Swarm Intelligence
Mémoire (2013-2015): Spatial Allocation in Swarm Robotics
Actuellement: Doctorant en Machine Learning
“Swarm intelligence is the discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization.”
Marco Dorigo and Mauro Birattari (2007) Swarm intelligence. Scholarpedia, 2(9):1462.
“Self-organization is a process in which pattern at the global level of a system emerges solely from numerous interactions among the lower-level components of the system. Moreover, the rules specifying interactions among the system’s components are executed using only local information, without reference to the global pattern”
Gerardo Beni. From swarm intelligence to swarm robotics. In Swarm Robotics, pages 1-9. Springer, 2005.
Naturel
Artificiel
Scientifique : Comprehension du système
Ingégnerie : Exploitation du système
while(True):
counter +=1
# Signaling part
if counter > T:
signal
counter = 0
# Synchronization
if signal_detected:
counter += alpha * counter
“Swarm robotics is the study of how to design groups of robots that operate without relying on any external infrastructure or on any form of centralized control. In a robot swarm, the collective behavior of the robots results from local interactions between the robots and between the robots and the environment in which they act”
Marco Dorigo et al. (2014) Swarm robotics. Scholarpedia, 9(1):1463.
M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1-41, 2013.
Ant colony optimization (ACO) is a population-based metaheuristic that can be used to find approximate solutions to NP-hard optimization problems.
Marco Dorigo (2007) Ant colony optimization. Scholarpedia, 2(3):1461.
1. Initialization fourmis 2. Selection route 3. Mise à jour phéromone
1. Initialization fourmis 2. Selection route 3. Mise à jour phéromone
\[ p_{xy}^k = \frac { (\tau_{xy}^{\alpha}) (\eta_{xy}^{\beta}) } { \sum_{z\in \mathrm{allowed}_y} (\tau_{xz}^{\alpha}) (\eta_{xz}^{\beta}) } \]
\[ \tau_{xy} \leftarrow (1-\rho)\tau_{xy} + \sum_{k}\Delta \tau^{k}_{xy} \]
où:
\(\eta_{xy}\) represente la valeur héuristique associé au problème
\(\tau_{xy}\) represente la valeur du pheromone
Permutation des villes: \[ [v_1, \cdots, v_n] \]
\[\eta_{xy} \rightarrow \frac{1}{d_{xy}}\]
Comment ça marche?
Reynolds, Craig W. “Flocks, herds and schools: A distributed behavioral model.” ACM SIGGRAPH computer graphics. Vol. 21. No. 4. ACM, 1987. http://www.red3d.com/cwr/boids/