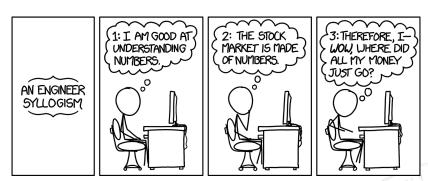


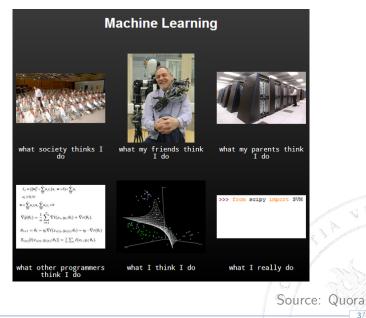
Everything you always wanted to know about ML and videogames (but were afraid to ask) UrLab


Jacopo De Stefani - jdestefa@ulb.ac.be

Université Libre de Bruxelles

Tuesday 3rd September, 2019

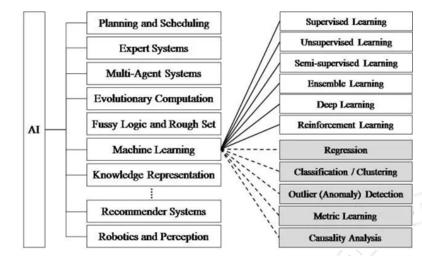
ULB



Relevant XCKD: 1570

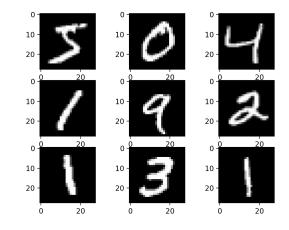
S

Machine Learning?


ш ш \times Ľ m ш ш × m 111 S x ш > _ z

ULB

S


ULB °

AI vs ML?

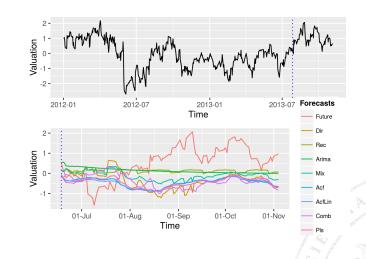
Source: Huawei Resarch Blog

ULB Some examples - Image classification

5/42

ES

ULB Some examples - Fraud Detection


S

ULB Some examples - Villo availability prediction

ULB Some examples - Time Series Analysis

ES ш × Ľ m ш ш ≃ m ι. S Ľ ш > _ z

ULB What are the common points?

Structured data

- Often not the case in real-life problem
- Preprocessing

ULB What are the common points?

Structured data

- Often not the case in real-life problem
- Preprocessing
- Single output variable
 - ► Fraud Detection,Image classification: Discrete value ⇒ Classification
 - ► Villo,TS: Continuous value ⇒ **Regression**

What are the common points?

Structured data

ULB

S

RUX

m

×

RS

ш >

z

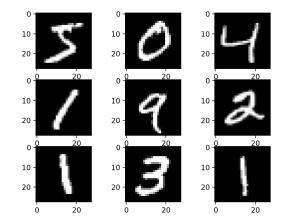
- Often not the case in real-life problem
- Preprocessing
- Single output variable
 - ► Fraud Detection,Image classification: Discrete value ⇒ Classification
 - ► Villo,TS: Continuous value ⇒ **Regression**
- Unknown Input/Output mapping
 - No available model
 - Data-driven

ULB Some examples - Image classification

XELLES

BRU

ш


ш Ж

m

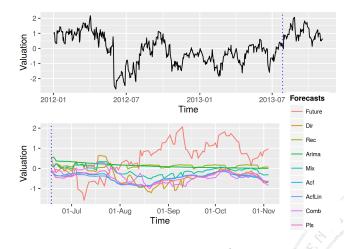
ι.

ERS

> | N

 $h_{IC}: \mathbf{X} \in \mathbb{R}^{32 \times 32} \mapsto y \in \{0, \cdots, 9\}$

ULB Some examples - Fraud Detection


 $h_{FD} :< ID, Country, Amount, Amount_{avg}, .. > \mapsto y \in \{0, 1\}$

ULB Some examples - Regression

 $h_R :< Lat, Long, Weather, Day, \dots > \mapsto y \in \mathbb{R}^+$

ULB Some examples - Time Series Analysis

 $h_{TS}: \mathbf{X} = [y_{t-d}, \cdots, y_{t-1}] \in \mathbb{R}^d \mapsto y = y_t \in \mathbb{R}$

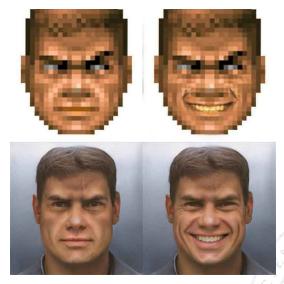
ULB Yes, but what about videogames? - Agents

ш \times Ľ m ш ш × m ι. S Ľ ш > z

ES

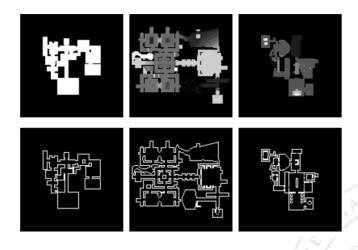
Yes, but what about videogames? - Agents

 $h_P: \mathbf{X} \in \mathbb{R}^{320 \times 240} \mapsto y \in \{\uparrow, \downarrow, \rightarrow, \leftarrow, Shoot, \cdots \}$

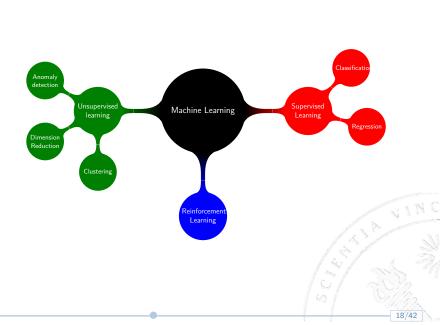

ULB

^{ULB} Yes, but what about videogames? - Visual

E BRUXELLES


8

NIVERS


 $h_V: \mathbf{X} \in \mathbb{R}^{32 \times 32} \mapsto \mathbb{R}^{1024 \times 1024}$

ULBYes, but what about videogames? - Leveladesign - Giacomello et al. [2018]

 $h_{LD}: \mathbf{X} \in \mathbb{R}^{128 \times 128} \mapsto \mathbb{R}^{128 \times 128}$

ULB Machine Learning Overview

Machine Learning

ULB

2

22 8

SS

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

T. Mitchell, 1997 19/42

ULB Learning machine - [Bontempi]

- Learning machine
 - ▶ Hypothesis/Model: $h(\cdot, \cdot) :< \mathbf{x}, \vartheta > \mapsto h(\mathbf{x}, \vartheta) \in \mathcal{Y}$

- Class of hypotheses: $h(\cdot, \vartheta), \vartheta \in \Theta$
- Loss function: $L(\cdot, \cdot) :< \mathbf{x}, y > \mapsto L(\mathbf{x}, y) \in \mathbb{R}$
- Learning algorithm: $\mathcal{L} :< \Theta, D_n > \mapsto h(\cdot, \vartheta_n)$

ULB Empirical risk minimization - [Bontempi]

$$\vartheta_n = \vartheta(D_n) = \operatorname*{arg\,min}_{\vartheta \in \Theta} R_{emp}(\vartheta)$$
(1)

$$R_{emp}(\vartheta) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, h(\mathbf{x_i}, \vartheta))$$
(2)

$$\nabla J(\vartheta) = 0$$

21/42

3

Machine Learning Process - [Bontempi]

Preliminary phase

- 1. Problem formulation
- 2. Experimental design
- 3. Preprocessing step
 - Missing data
 - Feature selection
 - Outlier removal

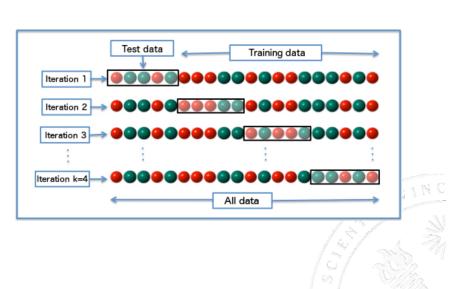
Learning phase

- 1. Parametric identification
- 2. Model selection

ULB

ULB Model selection - [Bontempi]

The selection of a model is usually perfomed by looking at its performance:


$$R_{ts}(\vartheta) = \frac{1}{n_{ts}} \sum_{i=1}^{n_{ts}} L(y_i, h(\mathbf{x_i}, \vartheta))$$
(4)

23/42

on unseen data:

 $D_{ts} = \{ < \mathbf{x_{n+1}}, \mathbf{y_{n+1}} >, \cdots, < \mathbf{x_{n+n_{ts}}}, y_{n+n_{ts}} > \}$ (5) N (

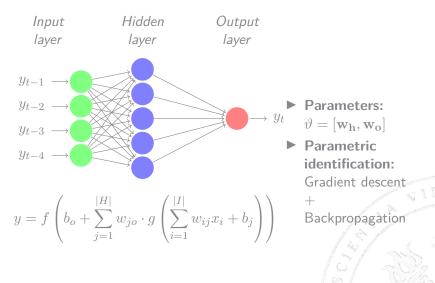
Cross Validation

× Ľ m ш × m S x z

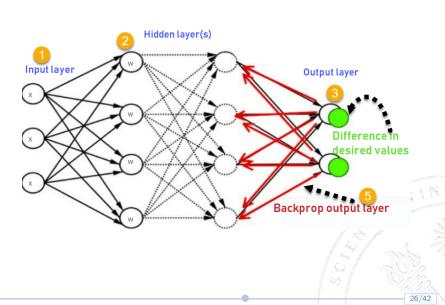
ULB

S

Ξ

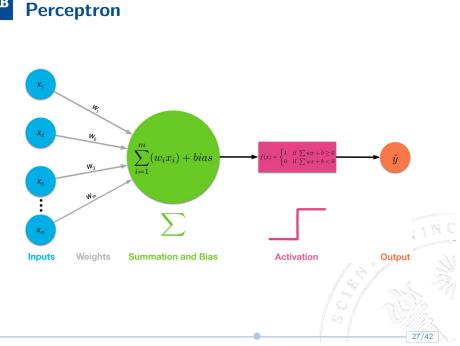

SITÉ

¥


ш

> | N

Models - ANN



Backpropagation

ULB

S

ULB

ULB Deep Learning - Intuition

ES

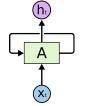
BRUXE

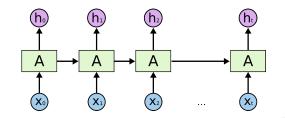
BRE DE

ι.

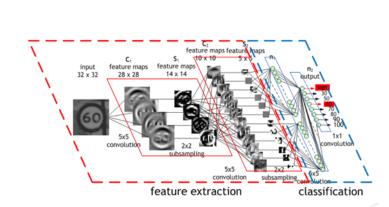
S

UNIVER

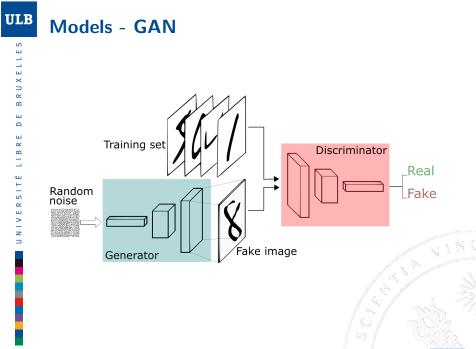

Deep Neural Network 00000 **Output Layer** Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 edges combinations of edges object models


Demo : http://playground.tensorflow.org/

ULB Deep Learning - RNN - Intuition


ES

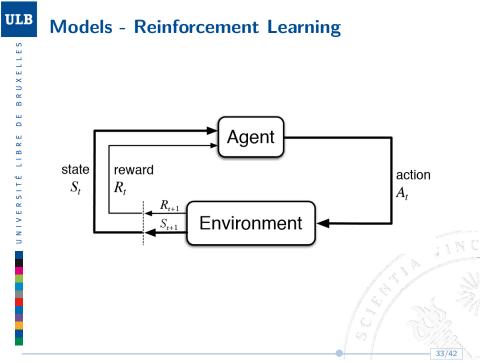
~



ULB Deep Learning - CNN - Intuition

Demo: https://cs.stanford.edu/people/karpathy/ convnetjs/demo/mnist.html

S


And many more...

Non-parametric methods

- Decision Trees
- K-nearest neighbors
- Radial Basis Functions
- Network based
 - Restricted Boltzmann Machines
- **Ensemble techniques**
 - Random Forests
 - Gradient Boosting

ULB

ULB Models - Deep Reinforcement Learning

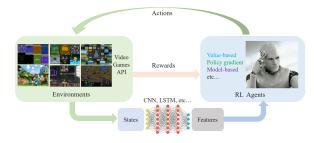


Fig. 1. The framework diagram of the typical DRL for video games. The deep learning model takes input from video games API, and extract meaningful features automatically. DRL agents produces actions based on these features, and make the environments transfer to next state.

Source: [Shao et al., 2019]

ES

Models - Deep Reinforcement Learning Architectures

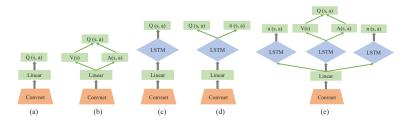


Fig. 2. The network architectures of typical DRL methods, with increased complexity and performance. (a): DQN network; (b)Dueling DQN network; (c): DRQN network; (d): Actor-critic network; (e): Reactor network.

Source: [Shao et al., 2019]

ULB

ULB

UXELLES

Ľ

m

ш

ш

8

5

ΞL

RS

Ц 2

N N

Wrap up - Review

Gen 34 species 14_genome 14 (37%) Fitness: 775 Max Fitness: 4322 a 2 <u>na</u> 977 U 239 А αB άx. 0 -⊡Up -⊡Down **HIII** (9 đ

Computer vision

- ► CNN
- Specialized algorithms
- Agent decision
 - (Deep) Reinforcement Learning
 - MLP/

Wrap-up - Review

Table 1 Machine learning techniques used within academic digital game research

Learning technique	Game agent representation	Game environment	Reference
Backpropagation	Multi-layer perceptron	Motocross the force	Chaperot and Fyfe (2006)
	Multi-layer perceptron	Simulated racing	Togelius et al. (2007b)
	Multi-layer perceptron	Simulated social environment	MacNamee and Cunningham (2003)
	Multi-layer perceptron	Soldier of fortune 2	Geisler (2004)
	Multi-layer perceptron (ATA ^a)	Legion-I	Bryant and Miikkulainen (2003)
	Multi-layer perceptron (ATA)	Legion-II	Bryant and Miikkulainen (2006a)
	Multi-layer perceptron (Ensemble)	Quake II	Bauckhage and Thurau (2004)
Backpropagation (LM ^b)	Multi-layer perceptron	FlatLand	Yannakakis et al. (2003)
Backpropagation (bagging)	Multi-layer perceptron (ensemble)	Motocross the force	Chaperot and Fyfe (2006)
	Multi-layer perceptron (ensemble)	Soldier of fortune 2	Geisler (2004)
Backpropagation (boosting)	Multi-layer perceptron	Motocross the force	Chaperot and Fyfe (2006)
	Multi-layer perceptron (Ensemble)	Soldier of fortune 2	Geisler (2004)
SOM	Self-organising map	Pong	McGlinchey (2003)
SOM & Backpropagation (LM)	Self-organising map & multi-layer perceptron	Quake II	Thurau et al. (2003)
Evolutionary algorithm	Single-layer perceptron	Cellz	Lucas (2004)
	Multi-layer perceptron	Simulated racing	Togelius and Lucas (2005)
	Multi-layer perceptron	Simulated racing	Togelius and Lucas (2006)
	Rule-base	Wargus	Ponsen and Spronck (2004)
Genetic algorithm	Single-layer perceptron	Xpilot	Parker et al. (2005b)
	Multi-layer perceptron	Dead end	Yannakakis et al. (2004)
	Multi-layer perceptron	FlatLand	Yannakakis et al. (2003)

Source: [Galway et al., 2008]

ULB

Wrap-up

- ML is not magic, but heavily relying on:
 - Linear algebra
 - Statistics
- Data, and its structure is as important (if not more) than the model
- Data preprocessing can be as time consuming as parameter estimation / model selection
- The usage of ML in videogames is not only restricted to agents

ULB

39/42

- Deepmind Lab
- Mario Al
- OpenAl Gym

ES

Thank you for your attention! Any questions/comments?

ULB

ULB

Bibliography I

References

Gianluca Bontempi. Statistical foundations of machine learning.

Leo Galway, Darryl Charles, and Michaela Black. Machine learning in digital games: a survey. *Artificial Intelligence Review*, 29(2): 123–161, 2008.

Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. Doom level generation using generative adversarial networks. In 2018 IEEE Games, Entertainment, Media Conference (GEM), pages 316–323. IEEE, 2018.

Bibliography II

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep reinforcement learning in video games. *arXiv preprint arXiv:1912.10944*, 2019.

ULB